Skip to main content

Distribution of polypurine/polypyrimidine tract sequences in the human MHC region and their possible functions

  • Conference paper

Summary

To investigate the biological significance of polypurine/polypyrimidine (pur/pyr) tract sequences in the human MHC region, we searched both DNA strands for sequences longer than 100 nt with an A+G% (AG%) higher than 85% (A+G tract). Among all human genome sequences registered in DDBJ (ca. 32 Mb in total), we obtained 6247 A+G tracts. There exists one tract per 51 kb and therefore, roughly one tract per one replicon size. One hundred seventeen tracts (one tract per 33 kb) were found in the MHC region, which is a significantly higher level than that usually found in human genome segments. One of the A+G tracts is found in the DNA-replication switch region at the junction of MHC classes II and III. Other tracts were examined in connection with polymorphism levels of several MHC genes. We also investigated apparently long A+G tracts in the entire human genome. The longest A+G tract found so far is the 2798-nt tract found in the 3’ downstream region of rRNA genes. The biological significance of the long A+G tracts was investigated in connection with triplex formation, pausing of DNA replication, and enhancement of recombination.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agazie YM, Lee JS, Burkholder GD (1994) Characterization of a new monoclonal antibody to triplex DNA and immunofluorescent staining of mammalian chromosomes. J Biol Chem 269: 7019–7023

    PubMed  CAS  Google Scholar 

  • Agazie YM, Burkholder GD, Lee JS (1996) Triplex DNA in the nucleus: direct binding of triplex-specific antibodies and their effect on transcription, replication and cell growth. Biochem J 316: 461–466

    PubMed  CAS  Google Scholar 

  • Baran N, Lapidot A, Manor H (1991) Formation of DNA triplexes accounts for arrests of DNA synthesis at d(TC)n and d(GA)n tracts. Proc Natl Acad Sci USA 88: 507–511

    Article  PubMed  CAS  Google Scholar 

  • Barch MJ (1991) The ACT Cytogenetics Laboratory Manual. 2nd ed. Raven Press, Ltd., New York, pp 31

    Google Scholar 

  • Bebenek K, Abbots J, Roberts JD, Wilson SH, Kunkel TA (1989) Specificity and mechanism of error-prone replication by human immunodeficiency virus-I reverse transcriptase J Biol Chem 264: 16948–16956

    CAS  Google Scholar 

  • Bernardi G, Olofsson B, Filipski J, Zerial M, Salinas J, Cuny G, Meunier-Rotival M, Radier F (1985) The mosaic genome of warm-blooded vertebrates. Science 228: 953–958

    Article  PubMed  CAS  Google Scholar 

  • Bondeson ML, Dahl N, Malmgren H, Kleijer WJ, Tonnesen T, Carlberg BM, Pettersson U (1995) Inversion of the IDS gene resulting from recombination with IDS-related sequences is a common cause of the Hunter syndrome. Hum Mol Genet 4: 615–621

    Article  PubMed  CAS  Google Scholar 

  • Brinton BT, Caddie MS, Heintz NH (1991) Position and orientation-dependent effects of a eukaryotic Z-triplex DNA motif on episomal DNA replication in COS-7 cells. J Biol Chem 266: 5153–5161

    PubMed  CAS  Google Scholar 

  • Burkholder GD, Latimer UP, Lee JS (1988) Immunofluorescent staining of mammalian nuclei and chromosomes with a monoclonal antibody to triplex DNA. Chromosoma 97: 185–192

    Article  PubMed  CAS  Google Scholar 

  • Burn TC, Connors TD, Dackowski WR, Petry LR, Van Raay TJ, Millholland J, Venet M, Miller G, Hakim RM, Doggett NA, Landes GM, Klinger KW, Qian F, Onuchic LF, Wanick T, Germino GG (1995) Analysis of the genomic sequence for the autosomal dominant polycystic kidney disease (PKD 1) gene predicts the presence of a leucine-rich repeat. Hum Mol Genet 4: 575–582

    Article  PubMed  CAS  Google Scholar 

  • Chardon P, Renard C, Vaiman M (1999) The major histocompatibility complex in swine. Immunol Rev 167: 179–192

    Article  PubMed  CAS  Google Scholar 

  • Collier DA, Griffin JA, Wells RD (1988) Non-B right-handed DNA conformations of homopurine-homopyrimidine sequences in the murine immunoglobin Ca switch region. J Biol Chem 263: 7397–7405

    PubMed  CAS  Google Scholar 

  • Craig JM, Bickmore WA (1994) The distribution of CpG islands in mammalian chromosomes. Nat Genet 7: 376–382

    Article  PubMed  CAS  Google Scholar 

  • Dirks RW, Van de Rijke FM, Fujishita S, Van der Ploeg M, Raap AK (1993) Methodologies for specific intron and exon RNA localization in cultured cells by haptenized and fluorochromized probes. J Cell Sci 104: 1187–1197

    PubMed  CAS  Google Scholar 

  • Fukagawa T, Sugaya K, Matsumoto K, Okumura K, Ando A, Inoko H, Ikemura T (1995) A boundary of long-range G + C% mosaic domains in the human MHC locus: pseudoautosomal boundary-like sequence exists near the boundary. Genomics 25: 184191

    Google Scholar 

  • Hampel KJ, Crosson P, Lee JS (1991) Polyamines favor DNA triplex formation at neutral pH. Biochemistry 30: 4455–4459

    Article  PubMed  CAS  Google Scholar 

  • Hoffman-Liebermann B, Liebermann D, Troutt A, Kedes LH, Cohen SN (1986) Human homologs of TU transposon sequences: polypurine/polypyrimidine sequence elements that can alter DNA conformation in vitro and in vivo. Mol Cell Biol 6: 3632–3642

    PubMed  CAS  Google Scholar 

  • Holmquist GP (1992) Chromosome bands, their chromatin flavors, and their functional features. Am J Hum Genet 51: 17–37

    PubMed  CAS  Google Scholar 

  • Hughes AL, Nei M (1990) Evolutionary relationships of class II major histocompatibility complex genes in mammals. Mol Biol Evol 6: 559–579

    Google Scholar 

  • Ikemura T (1985) Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2: 13–34

    PubMed  CAS  Google Scholar 

  • Ikemura T, Aota S (1988) Global variation in G+C content along vertebrate genome DNA: Possible correlation with chromosome band structures. J Mol Biol 203: 1–13

    Google Scholar 

  • Ikemura T, Ohno M, Uemura T, Sasaki H, Tenzen T (1998) Genome and subnuclear organization of non-B forming DNAs in mammalian chromosomes. Cytogenet Cell Genet 81: 101–102

    Google Scholar 

  • Iker.iura T, Wada K (1991) Evident diversity of codon usage patterns of human genes with respect to chromosome banding patterns and chromosome numbers; relation between nucleotide sequence data and cytogenetic data. Nucleic Acids Res 19: 4333–4339

    Google Scholar 

  • Ikemura T, Wada K, Aota S (1990) Giant G+C% mosaic structures of the human genome found by arrangement of GenBank human DNA sequences according to genetic positions. Genomics 2: 207–216

    Google Scholar 

  • Johnson CV, Singer RH, Lawrence JB (1991) Fluorescent detection of nuclear RNA and DNA: implications for genome organization. Methods Cell Biol 35: 73–99

    Article  PubMed  CAS  Google Scholar 

  • Kohwi Y, Panchenko Y (1993) Transcription-dependent recombination induced by triple-helix formation. Genes Dev 7: 1766–1778

    Article  PubMed  CAS  Google Scholar 

  • Kim RA, Wang JC (1989) A subthreshold level of DNA topoisomerases leads to the excision of yeast rDNA as extrachromosomal rings. Cell 57: 975–985

    Article  PubMed  CAS  Google Scholar 

  • Lapidot A, Baran N, Manor H (1989) (dT-dC)n and (dG-dA)n tracts arrest single-stranded DNA replication in vitro. Nucleic Acids Res 17: 883–900

    Google Scholar 

  • Lawrence JB, Singer RH, Marselle LM (1989) Highly localized tracts of specific transcripts within interphase nuclei visualized by in situ hybridization. Cell 57: 493–502

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Burkholder GD, Latimer LJP, Haug BL, Braun RP (1987) A monoclonal antibody to triplex DNA binds to eucaryotic chromosomes. Nucleic Acid Res 15: 1047–1061

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto K, Arai M, Ishihara N, Ando A, Inoko H, Ikemura T (1992) Cluster of fibronectin type III repeats found in the human major histocompatibility complex class III region shows the highest homology with the repeats in an extracellular matrix protein, Tenascin. Genomics 12: 485–491

    Google Scholar 

  • Mirkin SM, Frank-Kamenetskii MD (1994) H-DNA and related structures. Annu Rev Biophys Biomol Struct 23: 541–576

    Article  PubMed  CAS  Google Scholar 

  • Ohno M, Tenzen T, Watanabe Y, Yamagata S, Kanaya S, Ikemura T (1999) Non-B DNA structures spatially and sequence-specifically associated with individual centromeres in the human interphase nucleus. Chromosome Today 13:in press

    Google Scholar 

  • Ruskin B, Green MR (1985) The role of the 3’ splice site consensus sequence in mammalian pre-mRNA splicing. Nature 317: 732–734

    Article  PubMed  CAS  Google Scholar 

  • Samadashwily GM, Dayn A, Mirkin SM (1993) Suicidal nucleotide sequences for DNA polymerization. EMBO J 12: 4975–4983

    PubMed  CAS  Google Scholar 

  • Siedlaczck I, Epplen C, Rieb O, Epplen JT (1993) Simple repetitive ( GAA)n loci in the human genome. Electrophoresis 14: 973–977

    Google Scholar 

  • Stein CA (1995) Does antisense exist? Nat Med 1: 1119–1121

    Article  PubMed  CAS  Google Scholar 

  • Sugaya K, Fukagawa T, Matsumoto K, Mita K, Takahashi E, Ando A, Inoko H, Ikemura T (1994) Three genes in the human MHC class III region near the junction with the class II: gene for receptor of advanced glycosylation end products, PBX2 homeobox gene and a Notch homolog, human counterpart of mouse mammary tumor gene int-3. Genomics 23: 408–419

    Article  PubMed  CAS  Google Scholar 

  • Sugaya K, Sasanuma S, Nohata J, Kimura T, Fukagawa T, Nakamura Y, Ando A, Inoko H, Ikemura T, Mita K (1997) Gene organization of human NOTCH4 and (CTG)n polymorphism in this human counterpart gene of mouse proto-oncogene Int3. Gene 189: 235–244

    Article  PubMed  CAS  Google Scholar 

  • Tenzen T, Yamagata T, Fukagawa T, Sugaya K, Ando A, Inoko H, Gojobori T, Fujiyama A, Okumura K, Ikemura T (1997) Precise switching of DNA replication timing in the GC content transition area in the human major histocompatibility complex. Mol Cell Biol 17: 4043–4050

    PubMed  CAS  Google Scholar 

  • Thomas BJ, Rothstein R (1989) Elevated recombination rates in transcriptionally active DNA. Cell 56: 619–630

    Article  PubMed  CAS  Google Scholar 

  • Weinreb A, Collier DA, Birshtein BK, Wells RD (1990) Left-handed Z-DNA and irtramolecular triplex formation at the site of an unequal sister chromatid exchange. J Biol Chem 265: 1352–1359

    PubMed  CAS  Google Scholar 

  • Yancopoulos GD, Alt FW (1985) Developmentally controlled and tissue-specific expression of unrearranged VH gene segments. Cell 40: 271–281

    Article  PubMed  CAS  Google Scholar 

  • Yeager M, Hughes AL (1999) Evolution of the mammalian MHC: natural selection, recombination and convergent evolution. Immunol Rev 167: 45–58

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Japan

About this paper

Cite this paper

Kanaya, S., Fukagawa, T., Ando, A., Inoko, H., Kudo, Y., Ikemura, T. (2000). Distribution of polypurine/polypyrimidine tract sequences in the human MHC region and their possible functions. In: Kasahara, M. (eds) Major Histocompatibility Complex. Springer, Tokyo. https://doi.org/10.1007/978-4-431-65868-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-65868-9_9

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-65870-2

  • Online ISBN: 978-4-431-65868-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics