Skip to main content

The MHC paralogous group: listing of members and a brief overview

  • Conference paper
Major Histocompatibility Complex

Summary

Human chromosomes 1, 9, and 19 contain the regions paralogous to the major histocompatibility complex (MHC). Since our initial description, the number of gene families with copies in the MHC and these paralogous regions has been increasing steadily and now counts 37. There are at least 50 gene families that do not have copies in the MHC but share paralogous copies among the paralogous regions on chromosomes 1, 9, and 19, or between two of them. Thus, the MHC paralogous group is made up of more than 80 gene families with diverse structures, functions, and patterns of expression. Here we present the updated listing of gene families constituting this paralogous group. Systematic identification of the members of the MHC paralogous group offers a unique opportunity to deduce the organization of the primordial MHC, and to study the fate of duplicated genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abi Rached L, McDermott MF, Pontarotti P (1999) The MHC big bang. Immunol Rev 167: 33–44

    Article  CAS  Google Scholar 

  • Du Pasquier L, Flajnik MF (1998) Origin and evolution of the vertebrate immune system. In: Paul WE (ed) Fundamental Immunology. 4th ed. Lippincott-Raven, Philadelphia-New York, pp 605–650

    Google Scholar 

  • Endo T, Imanishi T, Gojobori T, Inoko H (1997) Evolutionary significance of intra-genome duplications on human chromosomes. Gene 205: 19–27

    Article  PubMed  CAS  Google Scholar 

  • Feder JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA, Basava A, Dormishian F, Domingo RJ, Ellis MC, Fullan A, Hinton LM, Jones NL, Kimmel BE, Kronmal GS, Lauer P, Lee VK, Loeb DB, Mapa FA, McClelland E, Meyer NC, Mintier GA, Moeller N, Moore T, Morikang E, Prass CE, Quintana L, Starnes SM, Schatzman RC, Brunke KJ, Drayna DT, Risch NJ, Bacon BR, Wolff RK (1996) A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet 13: 399–408

    Article  PubMed  CAS  Google Scholar 

  • Flajnik MF, Ohta Y, Namikawa-Yamada C, Nonaka M (1999) Insights into the primordial MHC from studies in ectothermic vertebrates. Immunol Rev 167: 59–67

    Article  PubMed  CAS  Google Scholar 

  • Hallböök F, Lundin L-G, Kullander K (1998) Lampetra Jluviatilis neurotrophin homolog, descendant of a neurotrophin ancestor, discloses the early molecular evolution of neurotrophins in the vertebrate subphylum. J Neurosci 18: 8700–871 I

    Google Scholar 

  • Hughes AL (1998) Phylogenetic tests of the hypothesis of block duplication of homologous genes on human chromosomes 6, 9, and 1. Mol Biol Evol 15: 854–870

    CAS  Google Scholar 

  • Kasahara M (1997) New insights into the genomic organization and origin of the major histocompatibility complex: Role of chromosomal (genome) duplication in the emergence of the adaptive immune system. Hereditas 127: 59–65

    Article  PubMed  CAS  Google Scholar 

  • Kasahara M (1998) What do the paralogous regions in the genome tell us about the origin of the adaptive immune system? Immunol Rev 166: 159–175

    Article  PubMed  CAS  Google Scholar 

  • Kasahara M (1999a) The chromosomal duplication model of the major histocompatibility complex. Immunol Rev 167: 17–32

    Article  PubMed  CAS  Google Scholar 

  • Kasahara M (I 999b) Genome dynamics of the major histocompatibility complex: insights from genome paralogy. Immunogenetics 49:in press

    Google Scholar 

  • Kasahara M (1999e) Genome paralogy: A new perspective on the organization and origin of the major histocompatibility complex. Curr Top Microbiol Immunol 248:in press

    Google Scholar 

  • Kasahara M, Flajnik MF, Ishibashi T, Natori T (1995) Evolution of the major histocompatibility complex: a current overview. Transplant Immunol 3: 1–20

    Article  CAS  Google Scholar 

  • Kasahara M, Hayashi M, Tanaka K, Inoko H, Sugaya K, Ikemura T, Ishibashi T (1996) Chromosomal localization of the proteasome Z subunit gene reveals an ancient chromosomal duplication involving the major histocompatibility complex. Proc Natl Acad Sci USA 93: 9096–9101

    Article  PubMed  CAS  Google Scholar 

  • Kasahara M, Nakaya J, Satta Y, Takahata N (1997) Chromosomal duplication and the emergence of the adaptive immune system. Trends Genet 13: 90–92

    Article  PubMed  CAS  Google Scholar 

  • Katsanis N, Fitzgibbon J, Fischer EMC (1996) Paralogy mapping: Identification of a region in the human MHC triplicated onto human chromosomes 1 and 9 allows the prediction and isolation of novel PBX and NOTCH loci. Genomics 35: 101–108

    Article  PubMed  CAS  Google Scholar 

  • Klein J, Sato A (1998) Birth of the major histocompatibility complex. Scand J Immunol 47: 199–209

    Article  PubMed  CAS  Google Scholar 

  • Litman GW, Anderson MK, Rast JP (1999) Evolution of antigen binding receptors. Annu Rev Immunol 17: 109–147

    Article  PubMed  CAS  Google Scholar 

  • Lundin LG (1993) Evolution of the vertebrate genome as reflected in paralogous chromosomal regions in man and the house mouse. Genomics 16: 1–19

    Article  PubMed  CAS  Google Scholar 

  • Maresco DL, Chang E, Theil KS, Francke U, Anderson CL (1996) The three genes of the human FCGRI gene family encoding FcyRl flank the centromere of chromosome 1 at 1 p 12 and 1q21. Cytogenet Cell Genet 73: 157–163

    Article  PubMed  CAS  Google Scholar 

  • Nadeau JH, Kosowsky M (1991) Mouse map of paralogous genes. Mamm Genome 1: S433 - S460

    Article  PubMed  Google Scholar 

  • Ohno S (1970) Evolution by Gene Duplication. Springer-Verlag. New York

    Google Scholar 

  • Ollenuorff V, Mattei M-G, Fournier E, Adelaide J, Lopez M. Rosnet O, Birnbaum D (1998) A third human CBL gene is on chromosome 19. Int 1 Oncol 13: 1159–1161

    Google Scholar 

  • Patton SJ, Luke GN, Holland PWFI (1998) Complex history of a chromosomal paralogy region: Insights from amphioxus aromatic amino acid hydroxylase genes and insulinrelated genes. Mol Biol Evol 15: 1373–1380

    Google Scholar 

  • Pébusque M-J, Coulier F, Birnbaum D, Pontarotti P (1998) Ancient large-scale genome duplications: phylogenetic and linkage analyses shed light on chordate genome evolution. Mol Biol Evol 15: 1145–1159

    Article  PubMed  Google Scholar 

  • Postlethwait JH, Yan Y-L, Gates MA, Home S, Amores A, Brownlie A, Donovan A, Egan ES, Force A, Gong Z, Goutel C, Fritz A, Kelsh R, Knapik E, Liao E, Paw B, Ransom D, Singer A, Thomson M, Abduljabbar TS, Yelick P, Beier D, Jol, J-S, Larhammar D, Rosa F, Westerfield M, Zon LI, Johnson SL, Talbot WS (1998) Vertebrate genome evolution and the zebrafish gene map. Nat Genet 18: 345–349

    Article  PubMed  CAS  Google Scholar 

  • Ruddle FH, Bentley KL, Murtha MT, Risch N (1994) Gene loss and gain in the evolution of the vertebrates. Development 1994 Suppl: 155–161

    Google Scholar 

  • Ruvinsky I, Silver LM (1997) Newly identified paralogous groups on mouse chromosomes 5 and 11 reveal the age of a T-box cluster duplication. Genomics 40: 262–266

    Article  PubMed  CAS  Google Scholar 

  • Sharman AC, Holland PWH (1996) Conservation, duplication, and divergence of developmental genes during chordate evolution. Netherlands J Zool 46: 47–67

    Article  Google Scholar 

  • Sidow A (1996) Gen(om)e duplications in the evolution of early vertebrates. Curr Opin Genet Dev 6: 715–722

    Article  PubMed  CAS  Google Scholar 

  • Spring J (1997) Vertebrate evolution by interspecific hybridization–are we polyploid? FEBS Lett 400: 2–8

    Article  PubMed  CAS  Google Scholar 

  • Takami K, Zaleska-Rutczynska Z, Figueroa F, Klein J (1997) Linkage of LMP, TAP, and R1NG3 with Mhc class I rather than class Il genes in the zebrafish. J Immunol 159: 6052–6060

    PubMed  CAS  Google Scholar 

  • Trachtulec Z, Hamvas RMJ, Forejt J, Lehrach HR, Vincek V, Klein J (1997) Linkage of TATA-binding protein and proteasome subunit C5 genes in mice and humans reveals synteny conserved between mammals and invertebrates. Genomics 44: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Yunis JJ (1982) The origin of man: a chromosomal pictorial legacy. Science 215: 1525–1530

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Japan

About this paper

Cite this paper

Kasahara, M., Yawata, M., Suzuki, T. (2000). The MHC paralogous group: listing of members and a brief overview. In: Kasahara, M. (eds) Major Histocompatibility Complex. Springer, Tokyo. https://doi.org/10.1007/978-4-431-65868-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-65868-9_2

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-65870-2

  • Online ISBN: 978-4-431-65868-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics