Skip to main content

Transposable elements and the metamerismatic evolution of the HLA class I region

  • Conference paper
Major Histocompatibility Complex

Summary

We have analysed continuous genomic sequence of 1.8 Mb from the HLA class I region of the MHC with a view to understanding the evolution, organisation and sequential interrelationships between members of the multicopy HLA class I and PERB11 (MIC) gene families, human endogenous retroviruses (HERVs) and retroelements that are distributed within this region. Analysis and mapping of genomic sequence from PERB 11.2 (MICB) to HLA-F has revealed that the multicopy HLA and PERB11 (MIC) sequences, HERV-16 (P5 gene family) and associated retroelements such as Alu, LTR, MER and LI are contained within repeated segments that can be classified into at least 6 groups based on the distinctive features of paralogous transposable elements. Most of these segments appear to have evolved from a basic duplication unit or duplicon composed of a HLA class I, HERV-16 (P5) and PERB II (MIC) sequence, and the associated retroelements. Exponential amplification of duplicons by diversifying single and multisegmental duplications has resulted in many copies of pseudogenes and gene fragments, and three subgenomic blocks (alpha, beta, and kappa) that differ in the number, orientation and complexity of duplicons. Retroelements, particularly HERV-16, are closely associated with the breakpoints within and between duplicons (Kulski et al 1999b), suggesting that they have had a major role in the spread and diversity of the multicopy gene families.

From our analyses we conclude that the HLA class I genomic region is a metameric design of three distinct subgenomic blocks that are characterised by the presence of HLA class I, HERV-16 and PERB11 (MIC) sequences and distinctive retroelements. The blocks have evolved metamerismatically by the expansion and contraction of duplicons involving retroelements and basic recombination processes such as duplications, insertions, deletions and translocations. In this context, we also consider the distribution of many transposable elements within the MHC as “bandaids’ or “scars” brought about in response to genomic stress or damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abi Rached L, McDermott MF, Pontarotti P (1999) The MI-IC big bang. Immunol Rev 167: 33–45

    Article  CAS  Google Scholar 

  • Abraham Li, Leelayuwat C, Grimsley G, Degli-Esposti MA, Mann A, Zhang WJ, Christiansen FT, Dawkins RL (1992) Sequence differences between HLA-B and TNF distinguish different MHC ancestral haplotypes. Tissue Antigens 39: 117–121

    Article  PubMed  CAS  Google Scholar 

  • Andersson G, Svensson AC, Setterblad N, Rask L (1998) Retroelements in the human MHC class II region. Trends Genet 14: 109–114

    Article  PubMed  CAS  Google Scholar 

  • Bahram S, Bresnahan M, Geraghty DE, Spies T (1994) A second lineage of mammalian major histocompatibility complex class I genes. Proc Natl Acad Sci USA 91: 6259–6263

    Article  PubMed  CAS  Google Scholar 

  • Batzer MA, Deininger PL, Hellmann-Blumberg U, Jurka J, Labuda D, Rubin CM, Schmid CW, Zietkiewicz E, Zuckerkandl E (1996) Standardized nomenclature for Alu repeats. J Mol Evol 42: 3–6

    Article  PubMed  CAS  Google Scholar 

  • Beck S, Abdulla S, Alderton RP, Glynne RJ, Gut IG, Hosking LK, Jackson A, Kelly A, Newell WR, Sanseau P, Radley E, Thorpe KL, Trowsdale J (1996) Evolutionary dynamics of non-coding sequences within the class II region of the human MHC. J Mol Biol 255: 1–13

    Article  PubMed  CAS  Google Scholar 

  • Boeke JD (1997) LINEs and Alus-the polyA connection. Nat Genet 16: 6–7

    Article  PubMed  CAS  Google Scholar 

  • Chu W-M, Ballard R, Carpick BW, Williams BRG, Schmid CW (1998) Potential Alufunction: Regulation of the activity of double-stranded RNA-activated kinase PKR. Mol Cell Biol 18: 58–68

    PubMed  CAS  Google Scholar 

  • Dawkins R, Leelayuwat C, Gaudieri S, Tay G, Hui J, Cattley S, Martinez P, Kulski J (1999) Genomics of the Major Histocompatibility Complex: Haplotypes, retroviruses and disease. Immunol Rev 167: 275–304

    Article  PubMed  CAS  Google Scholar 

  • El Kahloun A, Vernet C, Jouanolle A-M, Boretto J, Mauvieux V, LeGall J-Y, David V, Pontarotti P (1992) A continuous restriction map from FILA-E to HLA-F. Structural comparison between different HLA-A haplotypes. Immunogenetics 35: 183–189

    Article  PubMed  Google Scholar 

  • El Kahloun A, Chauvel B, Mauvieux V, Dorval I, Jouanolle A-M, Gicquel I, Le Gall J-Y, David V (1993) Localization of seven new genes around the HLA-A locus. Hum Mol Genet 2: 55–60

    Article  PubMed  Google Scholar 

  • Gaudieri S, Giles K, Kulski J, Dawkins R (1997a) Duplication and polymorphism in the MHC: Alu generated diversity and polymorphism within the PERB11 gene family. Hereditas 127: 37–46

    Article  PubMed  CAS  Google Scholar 

  • Gaudieri S, Kulski JK, Balmer L, Giles KM, Inoko H, Dawkins RL (1997b) Retroelements and segmental duplications in the generation of diversity within the MHC. DNA Seq 8: 137–141

    PubMed  CAS  Google Scholar 

  • Gaudieri S, Kulski JK, Dawkins RL, Gojobori (1999) Different evolutionary histories in two subgenomic regions of the Major Histocompatibility Complex. Genome Res 9: 541–549

    CAS  Google Scholar 

  • Geraghty DE, Koller BH, Hansen JA, Orr HT (1992) The FILA class I gene family includes at least six genes and twelve pseudogenes and gene fragments. J Immunol 149: 1934–1946

    PubMed  CAS  Google Scholar 

  • Gould SJ (1989) Wonderful Life. The Burgess Shale and the Nature of History. Penguin Books LTD, London, England

    Google Scholar 

  • Grimsley C, Mather KA, Ober C (1998) HLA-H: a pseudogene with increased variation due to balancing selection at neighboring loci. Mol Biol Evol 15: 1581–1588

    Article  PubMed  CAS  Google Scholar 

  • Groh V, Steinle A, Bauer S, Spies T (1998) Recognition of stress-induced MHC molecules by intestinal epithelial gamma delta T cells. Science 279: 1737–1740

    Article  PubMed  CAS  Google Scholar 

  • Hoegstrand K, Boehme J (1999) Gene conversion can create new MHC alleles. Immunol Rev 167: 305–317

    Article  Google Scholar 

  • Hughes AL (1995) Origin and evolution of FILA class I pseudogenes. Mol Biol Evol 12: 247–258

    PubMed  CAS  Google Scholar 

  • Jurka J, Klonowski P, Dagman V, Pelton P (1996b) CENSOR- a program for identification and elimination of repetitive elements from DNA sequences. Comp Chem 20: 119–121

    Article  CAS  Google Scholar 

  • Kapitonov V, Jurka J (1996) The age of Alu subfamilies. J Mol Evol 42: 59–65

    Article  PubMed  CAS  Google Scholar 

  • Kazazian HH, Moran JV (1998) The impact of LI retrotransposons on the human genome. Nat Genet 19: 19–24

    Article  PubMed  CAS  Google Scholar 

  • Klein J, Sato A, O’hUigin C (1998) Evolution by gene duplication in the major histocompatibility complex. Cytogenet Cell Genet 80: 123–127

    Article  PubMed  CAS  Google Scholar 

  • Klein J, Zhu Z, Gutknecht J, Figueroa F, Kasahara M (1991) Lessons in evolution. In: Srivastava R, Ram BP, Tyle P (eds) Immunogenetics of the Major Histocompatibility Complex. VCH, New York, pp 18–38

    Google Scholar 

  • Komatsu-Wakui M, Tokunaga K, Ishikawa Y, Kashiwase K, Moriyama S, Tsuchiya N, Ando H, Shiina T, Geraghty DE, Inoko H, Juji T (1999) MIC-A polymorphism in Japanese and a MIC-A-MIC-B null haplotype. Immunogenetics 49: 620–628

    Article  PubMed  CAS  Google Scholar 

  • Kornberg A (1980) DNA Replication. WH Freeman and Co., New York

    Google Scholar 

  • Kulski JK, Dawkins RL (1999) The P5 multicopy gene family in the MHC is related in sequence to human endogenous retroviruses HERV-L and HERV-16. Immunogenetics 49: 404–412

    Article  PubMed  CAS  Google Scholar 

  • Kulski JK, Gaudieri S, Bellgard M, Balmer L, Giles K, Inoko H, Dawkins RL (1997) The evolution of MHC diversity by segmental duplication and transposition of retroelements. J Mol Evol 45: 599–609

    Article  PubMed  CAS  Google Scholar 

  • Kulski JK, Gaudieri S, Inoko T, Dawkins RL (1999a) Comparison between two HERVrich regions within the Major Histocompatibility Complex. J Mol Evol 48: 675–683

    Article  PubMed  CAS  Google Scholar 

  • Kulski JK, Gaudieri S, Martin A, Dawkins RL (1999b) Coevolution of PERB l 1 (MIC) and FILA class I genes with HERV-16 and retroelements by extended genomic duplication. J Mol Evol 49: 84–97

    Article  PubMed  CAS  Google Scholar 

  • Lania L, Di Cristofano A, Strazzullo M, Majello B, La Mantia G (1992) Structural and functional organization of the human endogenous retroviral ERV9 sequences. Virology 191.464–468

    Google Scholar 

  • Leelayuwat C, Townsend DC, Degli-Esposti MA, Abraham LJ, Dawkins RL (1994) A new polymorphic and multicopy MHC gene family related to non-mammalian class I. Immunogenetics 40: 339–351

    Article  PubMed  CAS  Google Scholar 

  • Leelayuwat C, Pinelli M, Dawkins RL (1995) Clustering of diverse replicated sequences in the MHC. Evidence for en bloc duplication. J Immunol 155: 692–698

    PubMed  CAS  Google Scholar 

  • Marshall B, Leelayuwat C, Degli-Eposti MA, Pinelli M, Abraham LI, Dawkins RL (1993) New major histocompatibility complex genes. Hum Immunol 38: 24–29

    Article  PubMed  CAS  Google Scholar 

  • Martin RD (1993) Primate origins: plugging the gaps. Nature 363: 223–234

    Article  PubMed  CAS  Google Scholar 

  • Maueler W, Kyas A, Keyl H-G, Epplen J (1998) A genome-derived (gaa.ttc)24 trinucleotide block binds nuclear protein(s) specifically and forms triple helices. Gene 215: 389–403

    Article  PubMed  CAS  Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226: 792–801

    Article  PubMed  CAS  Google Scholar 

  • Miki Y (1998) Retrotransposal integration of mobile genetic elements in human diseases. J Hum Genet 43: 77–84

    Article  PubMed  CAS  Google Scholar 

  • Mizuki N, Ando H, Kimura M, Ohno S, Miyata S, Yamazaki M, Tashiro H, Watanabe K, Ono A, Taguchi S, Sugawara C, Fukuzumi Y, Okumura K, Goto K, Ishihara M, Nakamura S, Yonemoto J, Kikuti YY, Shiina T, Chen L, et al. (1997) Nucleotide sequence analysis of the HLA class I region spanning the 237-kb segment around the HLA-B and -C genes. Genomics 42: 55–66

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Gu X, Sitnikova T (1997) Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci USA 94: 7799–7806

    Article  PubMed  CAS  Google Scholar 

  • Nouvel P (1994) The mammalian genome shaping activity of reverse transcriptase. Genetica 93: 191–201

    Article  PubMed  CAS  Google Scholar 

  • Parham P, Lomen CE, Lawlor DA, Ways JP, Holmes N, Coppin HL, Salter RD, Wan AM, Ennis PD (1988) Nature of polymorphism in HLA-A, -B, and -C molecules. Proc Natl Acad Sci USA 85: 4005–4009

    Article  PubMed  CAS  Google Scholar 

  • Pichon L, Cam G, Bouric P, Giffon T, Chauvel B, Lepourcelet M, Mosser J, Legall J-V, David V (1996) Structural analysis of the I-ILA-A/HLA-F subregion: precise localization of two new multigene families closely associated with the HLA class I sequences. Genomics 32: 236–244

    Article  PubMed  CAS  Google Scholar 

  • Santos EJM, Epplen JT, Epplen C, Guerreiro JF (1998) Microsatellite evolution in the 5’UTR of the HLA-F gene. Human Evol 13: 57–64

    Article  Google Scholar 

  • Sassaman DM, Dombroski BA, Moran JV, Kimberland ML, Naas, TP, DeBerardinis RJ, Gabriel A, Swegold GD, Kazazian Jr FIH (1997) Many human LI elements are capable of retrotransposition. Nat Genet 16: 37–43

    Article  PubMed  CAS  Google Scholar 

  • Satta Y, Li YJ, Takahata N (1998) The neutral theory and natural selection in the HLA region. Front Biosci 27: d459–467

    Google Scholar 

  • Schmid CW (1996) Alu structure, origin, evolution, significance, and function of one-tenth of human DNA. Prog Nucleic Acids Res Mol Biol 53: 283–319

    Article  CAS  Google Scholar 

  • Shiina T, Tamiya G, Oka A, Takishima N, Inoko H (1999) Genome sequence analysis of the 1.8 Mb entire human MHC class I region. Immunol Rev 176: 193–199

    Article  Google Scholar 

  • Shiina T, Tamiya A, Oka A, Yamagata T, Yamagata N, Kikkawa E, Goto A, Mizuki N, Watanabe K, Fukuzumi Y, Taguchi S, Sugawara C, Ono A, Chen L, Yamazaki M, Tashiro H, Ando A, Ikemura T, Kimura M, Inoko H (1998) Nucleotide sequencing analysis of the 146-kilobase segment around the IkBL and MICA genes at the centromeric end of the HLA Class I region. Genomics 47: 372–382

    Article  PubMed  CAS  Google Scholar 

  • Smit AFA (1996) The origin of interspersed repeats in the human genome. Curr Opin Genet Dev 6: 743–748

    Article  PubMed  CAS  Google Scholar 

  • Smit AFA, Toth G, Riggs AD, Jurka J (1995) Ancestral, mammalian-wide subfamilies of LINE-I repetitive sequences. J Mol Biol 246: 401–417

    Article  PubMed  CAS  Google Scholar 

  • Soyfer VN, Potaman VN (1996) Triple-helical Nucleic Acids. Springer-Verlag, New York

    Book  Google Scholar 

  • Teng S-C, Kim B, Gabriel A (1996) Retrotransposon reverse-transcriptase-mediated repair of chromosomal breaks. Nature 383: 641–644

    Article  PubMed  Google Scholar 

  • Venditti CP, Chomey MJ (1992) Class I gene contraction within the HLA-A subregion of the human MHC. Genomics 14: 1003–1009

    Article  PubMed  CAS  Google Scholar 

  • Venditti CP, Harris JM, Geraghty DE, Chomey MJ (1994) Mapping and characterization of non-HLA multigene assemblages in the human MHC class I region. Genomics 22: 257–266

    Article  PubMed  CAS  Google Scholar 

  • Vernet C, Ribouchon MT, Chimini G, Jouanolle AM, Sidibe I, Pontarotti P (1993) A novel coding sequence belonging to a new multicopy gene family mapping within the human MHC class I region. Immunogenetics 38: 47–53

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Tokunaga K, Geraghty DE, Tadokoro K, Juji T (1997) Large-scale comparative mapping of the MHC class I region of predominant haplotypes in Japanese. Immunogenetics 46: 135–141

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki M, Tateno Y, Inoko H (1999) Genomic organisation around the centromeric end of the HLA class I region: large-scale sequence analysis. J Mol Evol 48: 317–327

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Japan

About this paper

Cite this paper

Kulski, J.K., Gaudieri, S., Dawkins, R.L. (2000). Transposable elements and the metamerismatic evolution of the HLA class I region. In: Kasahara, M. (eds) Major Histocompatibility Complex. Springer, Tokyo. https://doi.org/10.1007/978-4-431-65868-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-65868-9_11

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-65870-2

  • Online ISBN: 978-4-431-65868-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics