Skip to main content

Abstract

We know that both intrinsic and extrinsic blood coagulation factors are involved in tumor vascular permeability as well as tumor-induced fibrin clot formation in the extra-vascular space. Inflow of fibroblasts and inflammatory cells into the tumor tissue occurs accompanying blood coagulation. Consequently, cancer induced blood coagulation generates insoluble fibrin rich tumor stroma. The stroma becomes a barrier preventing macromolecular DDS drugs from directly attacking cancer cells within the cancer tissue. To tackle this problem, we successfully developed a new strategy that uses a monoclonal antibody (mAb), generated in this laboratory that reacts only with human insoluble fibrin, and not with human fibrinogen or fibrin degradation product (FDP). Another advantage of this mAb is that it cross-reacts with mouse insoluble fibrin, but not with mouse fibrinogen or FDP. As a result of the unique properties of the mAb, it is not neutralized by soluble fibrinogen or soluble fibrin products in the body. Our anti-fibrin clot mAb recognizes an unexplored pocket that is only uncovered when a fibrin clot forms. The epitope in the pocket is a hydrophobic region on the Bβ-chain that interacts closely with a counterpart region on the γ-chain in a soluble state. Using the new mAb, we succeeded in constructing an antibody drug conjugate (ADC) that binds to polymerized fibrin and slowly releases a cytotoxic drug that, on account of its small molecular size, can diffuse through the dense stroma to kill cancer cells. Cancer and blood clotting research may lead to new therapeutic strategies as well as to the biological understanding of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trousseau A (1865) Pegmasia alba dolens, vol 3. Balliere JB et Fils, Paris

    Google Scholar 

  2. Stein PD, Beemath A, Meyers FA, Skaf E, Sanchez J, Olson RE (2006) Incidence of venous thromboembolism in patients hospitalized with cancer. Am J Med 119:60–68

    Article  PubMed  Google Scholar 

  3. Petralia GA, Kakkar AK (2008) Anti-thrombotic therapy in cancer patients. In: Maragoudakis ME, Tsopanoglou NE (eds) Thrombin: physiology and disease. Springer, New York, pp 189–203

    Google Scholar 

  4. Matsumura Y (2012) Cancer stromal targeting (CAST) therapy. Adv Drug Deliv Rev 64:710–719

    Article  CAS  PubMed  Google Scholar 

  5. Matsumura and Maeda (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    PubMed  Google Scholar 

  6. Matsumura Y, Kimura M, Yamamoto T, Maeda H (1988) Involvement of the kinin-generating cascade and enhanced vascular permeability in tumor tissue. Jpn J Cancer Res 79:327–1334

    Article  Google Scholar 

  7. Matsumura Y, Maruo K, Kimura M, Yamamoto T, Konno T, Maeda H (1991) Kinin-generating cascade in advanced cancer patients a d in vitro study. Jpn J Cancer Res 82:732–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Edgington TS, Mackman N, Brand K, Ruf W (1991) The structural biology of expression and function of tissue factor. Thromb Haemost 66:67–79

    Article  CAS  PubMed  Google Scholar 

  9. Ruf W, Edgington TS (1994) Structural biology of tissue factor, the initiator of thrombogenesis in vivo. FASEB J 8:385–390

    Article  CAS  PubMed  Google Scholar 

  10. van den Berg YW, Osanto S, Reitsma PH, Versteeg HH (2012) The relationship between tissue factor and cancer progression: insights from bench and bedside. Blood 119:924–932

    Article  PubMed  CAS  Google Scholar 

  11. Belting M, Ahamed J, Ruf W (2005) Signaling of the tissue factor coagulation pathway in angiogenesis and cancer. Arterioscler Thromb Vasc Biol 25:1545–1550

    Article  CAS  PubMed  Google Scholar 

  12. Sampson MT, Kakkar AK (2002) Coagulation proteases and human cancer. Biochem Soc Trans 30:201–207

    Article  CAS  PubMed  Google Scholar 

  13. Palumbo JS, Kombrinck KW, Drew AF, Drew AF, Grimes TS, Kiser JH, Degen JL, Bugge TH (2000) Fibrinogen is an important determinant of the metastatic potential of circulating tumor cells. Blood 96:3302–3309

    Article  CAS  PubMed  Google Scholar 

  14. Morris DR, Ding Y, Ricks TK, Gullapalli A, Wolfe BL, Trejo J (2006) Protease-activated receptor-2 is essential for factor VIIa and Xa-induced signaling, migration, and invasion of breast cancer cells. Cancer Res 66:307–314

    Article  CAS  PubMed  Google Scholar 

  15. Hjortoe GM, Petersen LC, Albrektsen T, Sorensen BB, Norby PL, Mandal SK, Pendurthi UR, Rao LV (2004) Tissue factor-factor VIIa-specific up-regulation of IL-8 expression in MDA-MB-231 cells is mediated by PAR-2 and results in increased cell migration. Blood 103:3029–3037

    Article  CAS  PubMed  Google Scholar 

  16. Senger DR, Galli SJ, Dvorak AM, Peruzzi CA, Harvey VS, Dvorak HF (1983) Tumor cells secret a vascular permeability factor that promotes accumulation of ascites fluid. Science 21:983–985

    Article  Google Scholar 

  17. Ferrara N, Hillan KJ, Gerber HP, Novotny W (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3:391–400

    Article  CAS  PubMed  Google Scholar 

  18. Dvorak HF, Rickles FR (2006) Malignancy and hemostasis. In: Colman RW, Marder VJ, Clowes AW, George JN, Goldharber SZ (eds) Hemostasis and thrombosis: basic principles and clinical practice fifth edition. Lippin Cott Williams $ Wilkins, Philadelphia, pp 851–873

    Google Scholar 

  19. Abe K, Shoji M, Chen J, Bierhause A, Danave I, Micko C, Casper K, Dillehay D, Nawroth PP, Rickles FR (1999) Regulation of vascular endothelial growth factor production and angiogenesis by the cytoplasmic tail of tissue factor. Proc Natl Acad Sci USA 96:8663–8668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maeda H, Matsumura Y, Kato H (1988) Purification and identification of (Hydroxyprolyl3) bradykinin in ascitic fluid from a patient with gastric cancer. J Biol Chem 263:16051–16054

    CAS  PubMed  Google Scholar 

  21. Kato H, Matsumura Y, Maeda H (1988) Isolation and identification of hydroxyproline analogues of bradykinin in human urine. FEBS Lett 232:252–254

    Article  CAS  PubMed  Google Scholar 

  22. Dvorak HF, Orenstein NS, Carvalho AC, Churchill WH, Dvorak AM, Galli SJ, Feder J, Bitzer AM, Rypysc J, Giovinco P (1979) Induction of a fibrin-gel investment: an early event in line 10 hepatocarcinoma growth mediated by tumor-secreted products. J Immunol 122:164–174

    Google Scholar 

  23. Dvorak HF, Orenstein NS, Carvalko AC, Churchill WH, Dvorak AM, Galli SJ, Feder J, Bitzer AM, Rypysc J, Giovinco P (1979) Induction of a fibrin-gel investment: an early event in line 10 hepatocarcinoma growth mediated by tumor secreted product. J Immunol 122:166–174

    CAS  PubMed  Google Scholar 

  24. Dvorak HF, Senger DR, Dvorak AM, Harvey VS, McDonagh J (1985) Regulation of extravascular coagulation by microvascular permeability. Science 227:1059–1061

    Article  CAS  PubMed  Google Scholar 

  25. Senger DR, Perruzzi CA, Feder J, Dvorak HF (1986) A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Cancer Res 46:5629–5632

    CAS  PubMed  Google Scholar 

  26. Dvorak HF (2002) Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 20:4368–4380

    Article  CAS  PubMed  Google Scholar 

  27. Soe G, Kohno I, Inuzuka K, Itoh Y, Matsuda M (1996) A monoclonal antibody that recognizes a neo-antigen exposed in the E domain of fibrin monomer complexed with fibrinogen or its derivatives: its application to the measurement of soluble fibrin in plasma. Blood 88:2109–2117

    Article  CAS  PubMed  Google Scholar 

  28. Wada H, Kobayashi T, Abe Y, Hatada T, Yamada N, Sudo A, Uchida A, Nobori T (2006) Elevated levels of soluble fibrin or D-dimer indicate high risk of thrombosis. J Thromb Haemost 4:1253–1258

    Article  CAS  PubMed  Google Scholar 

  29. Yasunaga M, Manabe S, Matsumura Y (2011) New concept of cytotoxic immunoconjugate therapy targeting cancer-induced fibrin clots. Cancer Sci 102:1396–1402

    Article  CAS  PubMed  Google Scholar 

  30. Pacella BL Jr, Hui KY, Haber E, Matsueda GR (1983) Induction of fibrin-specific antibodies by immunization with synthetic peptides that correspond to amino termini of thrombin cleavage sites. Mol Immunol 20:521–527

    Article  CAS  PubMed  Google Scholar 

  31. Laudano AP, Doolittle RF (1978) Synthetic peptide derivatives that bind to fibrinogen and prevent the polymerization of fibrin monomers. Proc Natl Acad Sci USA 75:3085–3089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kudryk B, Rohoza A, Ahadi M, Chin J, Wiebe ME (1983) A monoclonal antibody with ability to distinguish between NH2-terminal fragments derived from fibrinogen and fibrin. Mol Immunol 20:1191–1200

    Article  CAS  PubMed  Google Scholar 

  33. Scheefers-Borchel U, Muller-Berghaus G, Fuhge P, Eberle R, Heimburger N (1985) Discrimination between fibrin and fibrinogen by a monoclonal antibody against a synthetic peptide. Proc Natl Acad Sci USA 82:7091–7095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schielen WJ, Voskuilen M, Tesser GI, Nieuwenhuizen W (1989) The sequence A alpha-(148–160) in fibrin, but not in fibrinogen, is accessible to monoclonal antibodies. Proc Natl Acad Sci USA 86:8951–8954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gargan PE, Graffney PJ, Pleasants JR, Ploplis VA (1993) A monoclonal antibody which recognises an epitopic region unique to the intact fibrin polymeric structure. Fibrinolysis 7:275–283

    Article  CAS  Google Scholar 

  36. Hui KY, Haber E, Matsueda GR (1983) Monoclonal antibodies to a synthetic fibrin-like peptide bind to human fibrin but not fibrinogen. Science 222:1129–1132

    Article  CAS  PubMed  Google Scholar 

  37. Kudryk B, Rohoza A, Ahadi M, Chin J, Wiebe ME (1984) Specificity of a monoclonal antibody for the NH2-terminal region of fibrin. Mol Immunol 21:89–94

    Article  CAS  PubMed  Google Scholar 

  38. Rosebrough SF, Grossman ZD, McAfee JG, Kudryk BJ, Subramanian G, Ritter-Hrncirik CA, Witanowski LS, Tillapaugh-Fay G, Urrutia E (1987) Aged venous thrombi: radioimmunoimaging with fibrin-specific monoclonal antibody. Radiology 162:575–577

    Article  CAS  PubMed  Google Scholar 

  39. Hisada Y, Yasunaga M, Hanaoka S, Saijou S, Sugino T, Tsuji A, Saga T, Tsumoto K, Manabe S, Kuroda J, Kuratsu J, Matsumura Y (2013) Discovery of an uncovered region in fibrin clots and its clinical significance. Sci Rep 3:2604–2610

    Article  PubMed  PubMed Central  Google Scholar 

  40. Obonai T, Fuchigami H, Furuya F, Kozuka N, Yasunaga M, Matsumura Y (2016) Tumor imaging by detecting fibrin clots in tumour stroma with anti-fibrin Fab fragment. Sci Rep 6:23613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Filler RB, Roberts SJ, Girardi M (2007) Cutaneous two-stage chemical carcinogenesis. CSH Protoc 2007:pdb prot4837

    PubMed  Google Scholar 

  42. Hirakawa S, Kodama S, Kunstfeld R, Kajiya K, Brown LF, Detmar M (2005) VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 201:1089–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fuchigami H, Manabe S, Yasunaga M, Matsumura Y (2018) Chemotherapy payload of anti-insoluble fibrin antibody-drug conjugate is released specifically upon binding to fibrin. Sci Rep 8:14211–14219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Tarin D, Price JE, Kettlewell MG, Souter RG, Vass AC, Crossley B (1984) Mechanisms of human tumor metastasis studied in patients with peritoneovenous shunts. Cancer Res 44(8):3584–3592

    CAS  PubMed  Google Scholar 

  45. Tarin D (2011) Cell and tissue interactions in carcinogenesis and metastasis and their clinical significance. Semin Cancer Biol 21(2):72–82

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Matsumura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Japan KK, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matsumura, Y. (2019). Cancer and Blood Coagulation. In: Matsumura, Y., Tarin, D. (eds) Cancer Drug Delivery Systems Based on the Tumor Microenvironment. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56880-3_2

Download citation

Publish with us

Policies and ethics