Skip to main content
  • 598 Accesses

Abstract

Cancer stromal targeting (CAST) therapy has the potential to overcome drug resistance and improve therapeutic efficacy, even in cancer with abundant stroma that inhibits the penetration of anticancer agents. Many types of cancer form varying degrees of stroma, which generally increases with disease progression. Noninvasive imaging methods for assessing the degree of stroma formation in individual cancers are useful for diagnosing malignancy potential and selecting patients who could potentially benefit from CAST therapy. Antibodies against several types of stromal targets, including insoluble fibrin and tissue factor, have been developed and could be good candidate platforms – not only for CAST therapy, but also for imaging to assess the degree of cancer stroma formation. This section focuses primarily on antibody-based nuclear medicine imaging targeting cancer stroma because it has the highest sensitivity and quantitative ability among the noninvasive imaging techniques applicable to clinical practice, and CAST therapy has been based on antibody-drug conjugates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

18F-FDG:

2-deoxy-2-[18F]fluoro-D-glucose

ADC:

antibody-drug conjugate

CAST:

cancer stromal targeting

CT:

computed tomography

IgG:

immunoglobulin G

MRI:

magnetic resonance imaging

PET:

positron emission tomography

SPECT:

single photon emission computed tomography

References

  1. Aloj L, D’Ambrosio L, Aurilio M, Morisco A, Frigeri F, Caraco C, Di Gennaro F, Capobianco G, Giovannoni L, Menssen HD, Neri D, Pinto A, Lastoria S (2014) Radioimmunotherapy with Tenarad, a 131I-labelled antibody fragment targeting the extra-domain A1 of tenascin-C, in patients with refractory Hodgkin’s lymphoma. Eur J Nucl Med Mol Imaging 41:867–877. https://doi.org/10.1007/s00259-013-2658-6

    Article  CAS  PubMed  Google Scholar 

  2. Arano Y, Wakisaka K, Ohmomo Y, Uezono T, Mukai T, Motonari H, Shiono H, Sakahara H, Konishi J, Tanaka C (1994) Maleimidoethyl 3-(tri-n-butylstannyl)hippurate: a useful radioiodination reagent for protein radiopharmaceuticals to enhance target selective radioactivity localization. J Med Chem 37:2609–2618

    Article  CAS  PubMed  Google Scholar 

  3. Aung W, Jin Z-H, Furukawa T, Claron M, Boturyn D, Sogawa C, Tsuji AB, Wakizaka H, Fukumura T, Fujibayashi Y, Dumy P, Saga T (2013) Micro-positron emission tomography/contrast-enhanced computed tomography imaging of orthotopic pancreatic tumor-bearing mice using the αvβ3 integrin tracer 64Cu-labeled cyclam-RAFT-c(-RGDfK-)4. Mol Imaging 12:376–387. https://doi.org/10.2310/7290.2013.00054

    Article  CAS  PubMed  Google Scholar 

  4. Aung W, Tsuji AB, Sudo H, Sugyo A, Furukawa T, Ukai Y, Kurosawa Y, Saga T (2016a) Immunotargeting of integrin α6β4 for single-photon emission computed tomography and near-infrared fluorescence imaging in a pancreatic Cancer model. Mol Imaging 15:153601211562491. https://doi.org/10.1177/1536012115624917

    Article  CAS  Google Scholar 

  5. Aung W, Tsuji AB, Sudo H, Sugyo A, Ukai Y, Kouda K, Kurosawa Y, Furukawa T, Saga T (2016b) Radioimmunotherapy of pancreatic cancer xenografts in nude mice using 90Y-labeled anti-α6β4 integrin antibody. Oncotarget 7:38835–38844. https://doi.org/10.18632/oncotarget.9631

    Article  PubMed  PubMed Central  Google Scholar 

  6. Aung W, Tsuji AB, Sudo H, Sugyo A, Ukai Y, Kouda K, Kurosawa Y, Furukawa T, Saga T, Higashi T (2017) Combined treatment of pancreatic cancer xenograft with 90Y-ITGA6B4-mediated radioimmunotherapy and PI3K/mTOR inhibitor. World J Gastroenterol 23:7551–7562. https://doi.org/10.3748/wjg.v23.i42.7551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ay I, Blasi F, Rietz TA, Rotile NJ, Kura S, Brownell A-L, Day H, Oliveira BL, Looby RJ, Caravan P (2014) In vivo molecular imaging of thrombosis and thrombolysis using a fibrin-binding positron emission tomographic probe. Circ Cardiovasc Imaging 7:697–705. https://doi.org/10.1161/CIRCIMAGING.113.001806

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bigner DD, Brown MT, Friedman AH, Coleman RE, Akabani G, Friedman HS, Thorstad WL, McLendon RE, Bigner SH, Zhao XG, Pegram CN, Wikstrand CJ, Herndon JE, Vick NA, Paleologos N, Cokgor I, Provenzale JM, Zalutsky MR (1998) Iodine-131-labeled antitenascin monoclonal antibody 81C6 treatment of patients with recurrent malignant gliomas: phase I trial results. J Clin Oncol 16:2202–2212

    Article  CAS  PubMed  Google Scholar 

  9. Boturyn D, Coll J-L, Garanger E, Favrot M-C, Dumy P (2004) Template assembled cyclopeptides as multimeric system for integrin targeting and endocytosis. J Am Chem Soc 126:5730–5739. https://doi.org/10.1021/ja049926n

    Article  CAS  PubMed  Google Scholar 

  10. Breij ECW, de Goeij BECG, Verploegen S, Schuurhuis DH, Amirkhosravi A, Francis J, Miller VB, Houtkamp M, Bleeker WK, Satijn D, Parren PWHI (2014) An antibody-drug conjugate that targets tissue factor exhibits potent therapeutic activity against a broad range of solid tumors. Cancer Res 74:1214–1226. https://doi.org/10.1158/0008-5472.CAN-13-2440

    Article  CAS  PubMed  Google Scholar 

  11. Cai W, Wu Y, Chen K, Cao Q, Tice DA, Chen X (2006) In vitro and in vivo characterization of 64Cu-labeled Abegrin TM, a humanized monoclonal antibody against integrin v 3. Cancer Res 66:9673–9681. https://doi.org/10.1158/0008-5472.CAN-06-1480

    Article  CAS  PubMed  Google Scholar 

  12. Caravan P, Das B, Dumas S, Epstein FH, Helm PA, Jacques V, Koerner S, Kolodziej A, Shen L, Sun W-C, Zhang Z (2007) Collagen-targeted MRI contrast agent for molecular imaging of fibrosis. Angew Chem Int Ed 46:8171–8173. https://doi.org/10.1002/anie.200700700

    Article  CAS  Google Scholar 

  13. Caravan P, Yang Y, Zachariah R, Schmitt A, Mino-Kenudson M, Chen HH, Sosnovik DE, Dai G, Fuchs BC, Lanuti M (2013) Molecular magnetic resonance imaging of pulmonary fibrosis in mice. Am J Respir Cell Mol Biol 49:1120–1126. https://doi.org/10.1165/rcmb.2013-0039OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen W, Cormode DP, Vengrenyuk Y, Herranz B, Feig JE, Klink A, Mulder WJM, Fisher EA, Fayad ZA (2013) Collagen-specific peptide conjugated HDL nanoparticles as MRI contrast agent to evaluate compositional changes in atherosclerotic plaque regression. JACC Cardiovasc Imaging 6:373–384. https://doi.org/10.1016/j.jcmg.2012.06.016

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ciesienski KL, Yang Y, Ay I, Chonde DB, Loving GS, Rietz TA, Catana C, Caravan P (2013) Fibrin-targeted PET probes for the detection of thrombi. Mol Pharm 10:1100–1110. https://doi.org/10.1021/mp300610s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cokgor I, Akabani G, Kuan CT, Friedman HS, Friedman AH, Coleman RE, McLendon RE, Bigner SH, Zhao XG, Garcia-Turner AM, Pegram CN, Wikstrand CJ, Shafman TD, Herndon JE, Provenzale JM, Zalutsky MR, Bigner DD (2000) Phase I trial results of iodine-131-labeled antitenascin monoclonal antibody 81C6 treatment of patients with newly diagnosed malignant gliomas. J Clin Oncol 18:3872

    Article  Google Scholar 

  17. Désogère P, Tapias LF, Rietz TA, Rotile N, Blasi F, Day H, Elliott J, Fuchs BC, Lanuti M, Caravan P (2017) Optimization of a collagen-targeted PET probe for molecular imaging of pulmonary fibrosis. J Nucl Med 58:1991–1996. https://doi.org/10.2967/jnumed.117.193532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Douketis JD, Ginsberg JS, Haley S, Julian J, Dwyer M, Levine M, Eisenberg PR, Smart R, Tsui W, White RH, Morris TA, Kaatz S, Comp PC, Crowther MA, Kearon C, Kassis J, Bates SM, Schulman S, Desjardins L, Taillefer R, Begelman SM, Gerometta M (2012) Accuracy and safety of 99mTc-labeled anti-D-dimer (DI-80B3) Fab’ fragments (ThromboView®) in the diagnosis of deep vein thrombosis: a phase II study. Thromb Res 130:381–389. https://doi.org/10.1016/j.thromres.2012.05.011

    Article  CAS  PubMed  Google Scholar 

  19. Drake TA, Morrissey JH, Edgington TS (1989) Selective cellular expression of tissue factor in human tissues. Implications for disorders of hemostasis and thrombosis. Am J Pathol 134:1087–1097

    Google Scholar 

  20. Dvorak HF (2015) Tumors: wounds that do not heal-redux. Cancer Immunol Res 3:1–11. https://doi.org/10.1158/2326-6066.CIR-14-0209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fujiwara Y, Furuta M, Manabe S, Koga Y, Yasunaga M, Matsumura Y (2016) Imaging mass spectrometry for the precise design of antibody-drug conjugates. Sci Rep 6:srep24954. https://doi.org/10.1038/srep24954

    Article  CAS  Google Scholar 

  22. Goudarzi B, Kishimoto R, Komatsu S, Ishikawa H, Yoshikawa K, Kandatsu S, Obata T (2010) Detection of bone metastases using diffusion weighted magnetic resonance imaging: comparison with 11C-methionine PET and bone scintigraphy. Magn Reson Imaging 28:372–379. https://doi.org/10.1016/j.mri.2009.12.008

    Article  PubMed  Google Scholar 

  23. Haas SL, Jesnowski R, Steiner M, Hummel F, Ringel J, Burstein C, Nizze H, Liebe S, Löhr JM (2006) Expression of tissue factor in pancreatic adenocarcinoma is associated with activation of coagulation. World J Gastroenterol. Baishideng Publishing Group Inc 12:4843–4849. https://doi.org/10.3748/wjg.v12.i30.4843

  24. Hernandez R, England CG, Yang Y, Valdovinos HF, Liu B, Wong HC, Barnhart TE, Cai W (2017) ImmunoPET imaging of tissue factor expression in pancreatic cancer with 89Zr-Df-ALT-836. J Control Release. https://doi.org/10.1016/j.jconrel.2017.08.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Heuveling DA, de Bree R, Vugts DJ, Huisman MC, Giovannoni L, Hoekstra OS, Leemans CR, Neri D, van Dongen GAMS (2013) Phase 0 microdosing PET study using the human mini antibody F16SIP in head and neck cancer patients. J Nucl Med 54:397–401. https://doi.org/10.2967/jnumed.112.111310

    Article  CAS  PubMed  Google Scholar 

  26. Hisada Y, Yasunaga M, Hanaoka S, Saijou S, Sugino T, Tsuji A, Saga T, Tsumoto K, Manabe S, Kuroda J-I, Kuratsu J-I, Matsumura Y (2013) Discovery of an uncovered region in fibrin clots and its clinical significance. Sci Rep 3:2604. https://doi.org/10.1038/srep02604

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hong H, Zhang Y, Nayak TR, Engle JW, Wong HC, Liu B, Barnhart TE, Cai W (2012) Immuno-PET of tissue factor in pancreatic cancer. J Nucl Med 53:1748–1754. https://doi.org/10.2967/jnumed.112.105460

    Article  CAS  PubMed  Google Scholar 

  28. Jin Z-H, Furukawa T, Galibert M, Boturyn D, Coll J-L, Fukumura T, Saga T, Dumy P, Fujibayashi Y (2011) Noninvasive visualization and quantification of tumor αVβ3 integrin expression using a novel positron emission tomography probe, 64Cu-cyclam-RAFT-c(-RGDfK-)4. Nucl Med Biol 38:529–540. https://doi.org/10.1016/j.nucmedbio.2010.11.008

    Article  CAS  PubMed  Google Scholar 

  29. Khorana AA, Ahrendt SA, Ryan CK, Francis CW, Hruban RH, Hu YC, Hostetter G, Harvey J, Taubman MB (2007) Tissue factor expression, angiogenesis, and thrombosis in pancreatic cancer. Clin Cancer Res 13: 2870–2875. https://doi.org/10.1158/1078-0432.CCR-06-2351

    Article  CAS  PubMed  Google Scholar 

  30. Koga Y, Manabe S, Aihara Y, Sato R, Tsumura R, Iwafuji H, Furuya F, Fuchigami H, Fujiwara Y, Hisada Y, Yamamoto Y, Yasunaga M, Matsumura Y (2015) Antitumor effect of antitissue factor antibody-MMAE conjugate in human pancreatic tumor xenografts. Int J Cancer 137:1457–1466. https://doi.org/10.1002/ijc.29492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Koivisto L, Heino J, Häkkinen L, Larjava H (2014) Integrins in wound healing. Adv Wound Care 3:762–783. https://doi.org/10.1089/wound.2013.0436

    Article  Google Scholar 

  32. Li Z-B, Chen K, Chen X (2008) 68Ga-labeled multimeric RGD peptides for microPET imaging of integrin αvβ3 expression. Eur J Nucl Med Mol Imaging 35:1100–1108. https://doi.org/10.1007/s00259-007-0692-y

    Article  CAS  PubMed  Google Scholar 

  33. Liu S (2009) Radiolabeled cyclic RGD peptides as integrin alpha(v)beta(3)-targeted radiotracers: maximizing binding affinity via bivalency. Bioconjug Chem 20:2199–2213. https://doi.org/10.1021/bc900167c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Luo H, England CG, Shi S, Graves SA, Hernandez R, Liu B, Theuer CP, Wong HC, Nickles RJ, Cai W (2016) Dual targeting of tissue factor and CD105 for preclinical PET imaging of pancreatic cancer. Clin Cancer Res 22:3821–3830. https://doi.org/10.1158/1078-0432.CCR-15-2054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17:545–580. https://doi.org/10.1101/gad.1047403

    Article  CAS  PubMed  Google Scholar 

  36. Matsumura Y (2012) Cancer stromal targeting (CAST) therapy. Adv Drug Deliv Rev 64:710–719. https://doi.org/10.1016/j.addr.2011.12.010

    Article  CAS  PubMed  Google Scholar 

  37. McLendon RE, Akabani G, Friedman HS, Reardon DA, Cleveland L, Cokgor I, Herndon JE, Wikstrand C, Boulton ST, Friedman AH, Bigner DD, Zalutsky MR (2007) Tumor resection cavity administered iodine-131-labeled antitenascin 81C6 radioimmunotherapy in patients with malignant glioma: neuropathology aspects. Nucl Med Biol 34:405–413. https://doi.org/10.1016/j.nucmedbio.2007.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Midwood KS, Orend G (2009) The role of tenascin-C in tissue injury and tumorigenesis. J Cell Commun Signal 3:287–310. https://doi.org/10.1007/s12079-009-0075-1

    Article  PubMed  PubMed Central  Google Scholar 

  39. Morris PE, Steingrub JS, Huang BY, Tang S, Liu PM, Rhode PR, Wong HC (2012) A phase I study evaluating the pharmacokinetics, safety and tolerability of an antibody-based tissue factor antagonist in subjects with acute lung injury or acute respiratory distress syndrome. BMC Pulm Med 12(5). https://doi.org/10.1186/1471-2466-12-5

  40. Morris TA, Marsh JJ, Chiles PG, Konopka RG, Pedersen CA, Schmidt PF, Gerometta M (2004a) Single photon emission computed tomography of pulmonary emboli and venous thrombi using anti-D-dimer. Am J Respir Crit Care Med 169:987–993. https://doi.org/10.1164/rccm.200306-735OC

    Article  PubMed  Google Scholar 

  41. Morris TA, Marsh JJ, Konopka R, Pedersen CA, Chiles PG (2004b) Improved imaging of deep venous thrombi during anticoagulation using radiolabelled anti-D-dimer antibodies. Nucl Med Commun 25:917–922

    Article  PubMed  Google Scholar 

  42. Nielsen CH, Erlandsson M, Jeppesen TE, Jensen MM, Kristensen LK, Madsen J, Petersen LC, Kjaer A (2015) Quantitative PET imaging of tissue factor expression using 18F-labled active site inhibited factor VII. J Nucl Med. https://doi.org/10.2967/jnumed.115.154849

    Article  PubMed  Google Scholar 

  43. Nielsen CH, Jeppesen TE, Kristensen LK, Jensen MM, Ali El HH, Madsen J, Wiinberg B, Petersen LC, Kjaer A (2016) PET imaging of tissue factor in pancreatic cancer using 64Cu-labeled active site inhibited factor VII. J Nucl Med 115:170266. https://doi.org/10.2967/jnumed.115.17026

    Article  Google Scholar 

  44. Nitori N, Ino Y, Nakanishi Y, Yamada T, Honda K, Yanagihara K, Kosuge T, Kanai Y, Kitajima M, Hirohashi S (2005) Prognostic significance of tissue factor in pancreatic ductal adenocarcinoma. Clin Cancer Res 11:2531–2539. https://doi.org/10.1158/1078-0432.CCR-04-0866

    Article  CAS  PubMed  Google Scholar 

  45. Novikov DS, Kiselev VG, Jespersen SN (2018) On modeling. Magn Reson Med 79:3172–3193. https://doi.org/10.1002/mrm.27101

    Article  PubMed  PubMed Central  Google Scholar 

  46. Obonai T, Fuchigami H, Furuya F et al (2016) Tumour imaging by the detection of fibrin clots in tumour stroma using an anti-fibrin fab fragment. Sci Rep 6:23613. https://doi.org/10.1038/srep23613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Obata T, Kershaw J, Tachibana Y et al (2018) Comparison of diffusion-weighted MRI and anti-stokes Raman scattering (CARS) measurements of the inter-compartmental exchange-time of water in expression-controlled aquaporin-4 cells. Sci Rep 8:13199. https://doi.org/10.1038/s41598-018-36264-9

    Article  CAS  Google Scholar 

  48. Polasek M, Fuchs BC, Uppal R, Schühle DT, Alford JK, Loving GS, Yamada S, Wei L, Lauwers GY, Guimaraes AR, Tanabe KK, Caravan P (2012) Molecular MR imaging of liver fibrosis: a feasibility study using rat and mouse models. J Hepatol 57:549–555. https://doi.org/10.1016/j.jhep.2012.04.035

    Article  PubMed  PubMed Central  Google Scholar 

  49. Polasek M, Yang Y, Schühle DT, Yaseen MA, Kim YR, Sung YS, Guimaraes AR, Caravan P (2017) Molecular MR imaging of fibrosis in a mouse model of pancreatic cancer. Sci Rep 7:8114. https://doi.org/10.1038/s41598-017-08838-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Qing C (2017) The molecular biology in wound healing & non-healing wound. Chin J Traumatol 20:189–193. https://doi.org/10.1016/j.cjtee.2017.06.001

    Article  PubMed  PubMed Central  Google Scholar 

  51. Reardon DA, Zalutsky MR, Akabani G, Coleman RE, Friedman AH, Herndon JE, McLendon RE, Pegram CN, Quinn JA, Rich JN, Vredenburgh JJ, Desjardins A, Guruangan S, Boulton S, Raynor RH, Dowell JM, Wong TZ, Zhao X-G, Friedman HS, Bigner DD (2008) A pilot study: 131I-antitenascin monoclonal antibody 81c6 to deliver a 44-Gy resection cavity boost. Neuro-Oncology 10:182–189. https://doi.org/10.1215/15228517-2007-053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Reilly RM (2010) The radiochemistry of monoclonal antibodies and peptides. In: Monoclonal antibody and peptide-targeted radiotherapy of Cancer. Wiley, Hoboken, pp 39–100

    Chapter  Google Scholar 

  53. Reulen H-J, Poepperl G, Goetz C, Gildehaus FJ, Schmidt M, Tatsch K, Pietsch T, Kraus T, Rachinger W (2015) Long-term outcome of patients with WHO Grade III and IV gliomas treated by fractionated intracavitary radioimmunotherapy. J Neurosurg 123:1–11. https://doi.org/10.3171/2014.12.JNS142168

    Article  Google Scholar 

  54. Saga T, Sakahara H, Nakamoto Y, Sato N, Zhao S, Aoki T, Miyatake S, Namba Y, Konishi J (1999) Radioimmunotherapy of human glioma xenografts in nude mice by indium-111 labelled internalising monoclonal antibody. Eur J Cancer 35:1281–1285

    Article  CAS  PubMed  Google Scholar 

  55. Saito Y, Hashimoto Y, Kuroda J-I, Yasunaga M, Koga Y, Takahashi A, Matsumura Y (2011) The inhibition of pancreatic cancer invasion-metastasis cascade in both cellular signal and blood coagulation cascade of tissue factor by its neutralisation antibody. Eur J Cancer 47:2230–2239. https://doi.org/10.1016/j.ejca.2011.04.028

    Article  CAS  PubMed  Google Scholar 

  56. Shi S, Hong H, Orbay H, Graves SA, Yang Y, Ohman JD, Liu B, Nickles RJ, Wong HC, Cai W (2015) ImmunoPET of tissue factor expression in triple-negative breast cancer with a radiolabeled antibody Fab fragment. Eur J Nucl Med Mol Imaging 42:1295–1303. https://doi.org/10.1007/s00259-015-3038-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Spuentrup E, Botnar RM, Wiethoff AJ, Ibrahim T, Kelle S, Katoh M, Özgun M, Nagel E, Vymazal J, Graham PB, Günther RW, Maintz D (2008) MR imaging of thrombi using EP-2104R, a fibrin-specific contrast agent: initial results in patients. Eur Radiol 18:1995–2005. https://doi.org/10.1007/s00330-008-0965-2

    Article  PubMed  Google Scholar 

  58. Starmans LWE, van Duijnhoven SMJ, Rossin R, Aime S, Daemen MJAP, Nicolay K, Grüll H (2013) SPECT imaging of fibrin using fibrin-binding peptides. Contrast Media Mol Imaging 8:229–237. https://doi.org/10.1002/cmmi.1521

    Article  CAS  PubMed  Google Scholar 

  59. Starmans LWE, van Mourik T, Rossin R, Verel I, Nicolay K, Grüll H (2015) Noninvasive visualization of tumoral fibrin deposition using a peptidic fibrin-binding single photon emission computed tomography tracer. Mol Pharm 12:1921–1928. https://doi.org/10.1021/mp500673u

    Article  CAS  PubMed  Google Scholar 

  60. Tachibana Y, Obata T, Tsuchiya H, Omatsu T, Kishimoto R, Kawaguchi H, Nishikori A, Kamagata K, Hori M, Aoki S, Tsuji H, Inoue T (2015) Diffusion-tensor-based method for robust and practical estimation of axial and radial diffusional kurtosis. Eur Radiol 26:2559–2566. https://doi.org/10.1007/s00330-015-4038-z

    Article  PubMed  PubMed Central  Google Scholar 

  61. Takashima H, Tsuji AB, Saga T, Yasunaga M, Koga Y, Kuroda J-I, Yano S, Kuratsu J-I, Matsumura Y (2017) Molecular imaging using an anti-human tissue factor monoclonal antibody in an orthotopic glioma xenograft model. Sci Rep 7:12341. https://doi.org/10.1038/s41598-017-12563-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Takayama Y, Ohno T, Kishimoto R, Kato S, Yoneyama R, Kandatsu S, Tsujii H, Obata T (2009) Prediction of early response to radiotherapy of uterine carcinoma with dynamic contrast-enhanced MR imaging using pixel analysis of MR perfusion imaging. Magn Reson Imaging 27:370–376. https://doi.org/10.1016/j.mri.2008.07.007

    Article  PubMed  Google Scholar 

  63. Uppal R, Medarova Z, Farrar CT, Dai G, Moore A, Caravan P (2012) Molecular imaging of fibrin in a breast cancer xenograft mouse model. Investig Radiol 47:553–558. https://doi.org/10.1097/RLI.0b013e31825dddfb

    Article  CAS  Google Scholar 

  64. Veeravagu A, Liu Z, Niu G, Chen K, Jia B, Cai W, Jin C, Hsu AR, Connolly AJ, Tse V, Wang F, Chen X (2008) Integrin alphavbeta3-targeted radioimmunotherapy of glioblastoma multiforme. Clin Cancer Res 14:7330–7339. https://doi.org/10.1158/1078-0432.CCR-08-0797

    Article  CAS  PubMed  Google Scholar 

  65. Vrana JA, Stang MT, Grande JP, Getz MJ (1996) Expression of tissue factor in tumor stroma correlates with progression to invasive human breast cancer: paracrine regulation by carcinoma cell-derived members of the transforming growth factor beta family. Cancer Res 56:5063–5070

    Google Scholar 

  66. Yasunaga M, Manabe S, Furuta M, Ogata K, Koga Y, Takashima H, Nishida T, Matsumura Y (2018) Mass spectrometry imaging for early discovery and development of cancer drugs. AIMS Med Sci 5:162–180. https://doi.org/10.3934/medsci.2018.2.162

    Article  Google Scholar 

  67. Yasunaga M, Manabe S, Matsumura Y (2011a) New concept of cytotoxic immunoconjugate therapy targeting cancer-induced fibrin clots. Cancer Sci 102:1396–1402. https://doi.org/10.1111/j.1349-7006.2011.01954.x

    Article  CAS  PubMed  Google Scholar 

  68. Yasunaga M, Manabe S, Tarin D, Matsumura Y (2011b) Cancer-stroma targeting therapy by cytotoxic immunoconjugate bound to the collagen 4 network in the tumor tissue. Bioconjug Chem 22:1776–1783. https://doi.org/10.1021/bc200158j

    Article  CAS  PubMed  Google Scholar 

  69. Yasunaga M, Manabe S, Tarin D, Matsumura Y (2013) Tailored immunoconjugate therapy depending on a quantity of tumor stroma. Cancer Sci 104:231–237. https://doi.org/10.1111/cas.12062

    Article  CAS  PubMed  Google Scholar 

  70. Yasunaga M, Manabe S, Tsuji A, Furuta M, Ogata K, Koga Y, Saga T, Matsumura Y (2017) Development of antibody–drug conjugates using DDS and molecular imaging. Bioengineering 4:78. https://doi.org/10.3390/bioengineering4030078

    Article  CAS  PubMed Central  Google Scholar 

  71. Zalutsky MR, Moseley RP, Coakham HB, Coleman RE, Bigner DD (1989) Pharmacokinetics and tumor localization of 131I-labeled anti-tenascin monoclonal antibody 81C6 in patients with gliomas and other intracranial malignancies. Cancer Res 49:2813

    Google Scholar 

  72. Zalutsky MR, Narula AS (1987) A method for the radiohalogenation of proteins resulting in decreased thyroid uptake of radioiodine. Int J Rad Appl Instrum A 38:1051–1055

    Article  CAS  PubMed  Google Scholar 

  73. Zalutsky MR, Reardon DA, Akabani G, Coleman RE, Friedman AH, Friedman HS, McLendon RE, Wong TZ, Bigner DD (2008) Clinical experience with alpha-particle emitting 211At: treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6. J Nucl Med 49:30–38. https://doi.org/10.2967/jnumed.107.046938

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi B. Tsuji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Japan KK, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsuji, A.B., Saga, T. (2019). CAST Diagnostic Imaging. In: Matsumura, Y., Tarin, D. (eds) Cancer Drug Delivery Systems Based on the Tumor Microenvironment. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56880-3_13

Download citation

Publish with us

Policies and ethics