Skip to main content

A Multifunctional Envelope-Type Nano Device for Cancer Therapy

  • Chapter
  • First Online:
  • 661 Accesses

Abstract

Regarding cancer, innovative therapeutic approaches are needed for achieving a complete cure, since the conventional approaches are not satisfactory. The use of nucleic acids for modifying gene and protein levels in specific cells is one of the most promising approaches for cancer therapy, since it corrects the underlying cause of the disease. However, delivering various nucleic acids to their intracellular target sites is a difficult task, since they need to traverse the plasma membrane in order to be effective. Unlike conventional low molecular weight drugs, nucleic acids are large, hydrophilic and susceptible to degradation. Therefore, a sophisticated gene delivery system is required to protect and efficiently deliver these molecules to their target sites. We have been developing a series of innovative gene delivery systems based on our original design of a multifunctional envelope-type nano device (MEND). A MEND could be optimized at various levels to efficiently and safely deliver different nucleic acids to their target sites in specific cells in the body. We focused mainly on improving biodistribution after systemic administration as well as improving intracellular trafficking so as to achieve the maximum effect. Here, we summarize our efforts to develop various versions of MENDs for efficient gene delivery in vitro and in vivo. The focus is on the use of MENDs for the treatment of cancer through applying the concept of active targeting as well as passive targeting. We also summarize the applicability of a MEND system for use in cancer immunotherapy. The MEND system described here is expected to extend the therapeutic applications of nucleic acids for the treatment of various currently incurable diseases, including cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahmad M, Rees RC, Ali SA (2004) Escape from immunotherapy: possible mechanisms that influence tumor regression/progression. Cancer Immunol Immunother 53(10):844–854. https://doi.org/10.1007/s00262-004-0540-x

    Article  PubMed  Google Scholar 

  2. Aili D, Mager M, Roche D, Stevens MM (2011) Hybrid nanoparticle-liposome detection of phospholipase activity. Nano Lett 11(4):1401–1405. https://doi.org/10.1021/nl1024062

    Article  CAS  PubMed  Google Scholar 

  3. Akita H, Kudo A, Minoura A, Yamaguti M, Khalil IA, Moriguchi R et al (2009) Multi-layered nanoparticles for penetrating the endosome and nuclear membrane via a step-wise membrane fusion process. Biomaterials 30(15):2940–2949. https://doi.org/10.1016/j.biomaterials.2009.02.009

    Article  CAS  PubMed  Google Scholar 

  4. Akita H, Ishiba R, Hatakeyama H, Tanaka H, Sato Y, Tange K et al (2013) A neutral envelope-type nanoparticle containing pH-responsive and SS-cleavable lipid-like material as a carrier for plasmid DNA. Adv Healthc Mater 2(8):1120–1125. https://doi.org/10.1002/adhm.201200431

    Article  CAS  PubMed  Google Scholar 

  5. Akita H, Ishiba R, Togashi R, Tange K, Nakai Y, Hatakeyama H et al (2015) A neutral lipid envelope-type nanoparticle composed of a pH-activated and vitamin E-scaffold lipid-like material as a platform for a gene carrier targeting renal cell carcinoma. J Control Release 200:97–105. https://doi.org/10.1016/j.jconrel.2014.12.029

    Article  CAS  PubMed  Google Scholar 

  6. Ara MN, Hyodo M, Ohga N, Hida K, Harashima H (2012) Development of a novel DNA aptamer ligand targeting to primary cultured tumor endothelial cells by a cell-based SELEX method. PLoS One 7(12):e50174. https://doi.org/10.1371/journal.pone.0050174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ara MN, Matsuda T, Hyodo M, Sakurai Y, Hatakeyama H, Ohga N et al (2014) An aptamer ligand based liposomal nanocarrier system that targets tumor endothelial cells. Biomaterials 35(25):7110–7120. https://doi.org/10.1016/j.biomaterials.2014.04.087

    Article  CAS  PubMed  Google Scholar 

  8. Azuma I, Seya T (2001) Development of immunoadjuvants for immunotherapy of cancer. Int Immunopharmacol 1(7):1249–1259

    Article  CAS  PubMed  Google Scholar 

  9. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M et al (2018) Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 24(5):541–550. https://doi.org/10.1038/s41591-018-0014-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brubaker SW, Bonham KS, Zanoni I, Kagan JC (2015) Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol 33:257–290. https://doi.org/10.1146/annurev-immunol-032414-112240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39(1):1–10. https://doi.org/10.1016/j.immuni.2013.07.012

    Article  CAS  PubMed  Google Scholar 

  12. Chen DS, Mellman I (2017) Elements of cancer immunity and the cancer-immune set point. Nature 541(7637):321–330. https://doi.org/10.1038/nature21349

    Article  CAS  PubMed  Google Scholar 

  13. Corrales L, Matson V, Flood B, Spranger S, Gajewski TF (2017) Innate immune signaling and regulation in cancer immunotherapy. Cell Res 27(1):96–108. https://doi.org/10.1038/cr.2016.149

    Article  CAS  PubMed  Google Scholar 

  14. Couzin-Frankel J (2013) Breakthrough of the year 2013. Cancer immunotherapy. Science 342(6165):1432–1433. https://doi.org/10.1126/science.342.6165.1432

    Article  CAS  PubMed  Google Scholar 

  15. Davis ME, Chen ZG, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7(9):771–782. https://doi.org/10.1038/nrd2614

    Article  CAS  PubMed  Google Scholar 

  16. El-Sayed A, Khalil IA, Kogure K, Futaki S, Harashima H (2008) Octaarginine- and octalysine-modified nanoparticles have different modes of endosomal escape. J Biol Chem 283(34):23450–23461. https://doi.org/10.1074/jbc.M709387200

    Article  CAS  PubMed  Google Scholar 

  17. El-Sayed A, Masuda T, Khalil I, Akita H, Harashima H (2009) Enhanced gene expression by a novel stearylated INF7 peptide derivative through fusion independent endosomal escape. J Control Release 138(2):160–167. https://doi.org/10.1016/j.jconrel.2009.05.018

    Article  CAS  PubMed  Google Scholar 

  18. Ewert KK, Zidovska A, Ahmad A, Bouxsein NF, Evans HM, McAllister CS et al (2010) Cationic liposome-nucleic acid complexes for gene delivery and silencing: pathways and mechanisms for plasmid DNA and siRNA. Top Curr Chem 296:191–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gentile F, Curcio A, Indolfi C, Ferrari M, Decuzzi P (2008) The margination propensity of spherical particles for vascular targeting in the microcirculation. J Nanobiotechnol 6:9. https://doi.org/10.1186/1477-3155-6-9

    Article  CAS  Google Scholar 

  20. Harding CV, Collins DS, Kanagawa O, Unanue ER (1991) Liposome-encapsulated antigens engender lysosomal processing for class II MHC presentation and cytosolic processing for class I presentation. J Immunol 147(9):2860–2863

    CAS  PubMed  Google Scholar 

  21. Harris TJ, von Maltzahn G, Derfus AM, Ruoslahti E, Bhatia SN (2006) Proteolytic actuation of nanoparticle self-assembly. Angew Chem Int Ed Engl 45(19):3161–3165. https://doi.org/10.1002/anie.200600259

    Article  CAS  PubMed  Google Scholar 

  22. Hashiba K, Sato Y, Harashima H (2017) pH-labile PEGylation of siRNA-loaded lipid nanoparticle improves active targeting and gene silencing activity in hepatocytes. J Control Release 262:239–246. https://doi.org/10.1016/j.jconrel.2017.07.046

    Article  CAS  PubMed  Google Scholar 

  23. Hatakeyama H, Akita H, Kogure K, Oishi M, Nagasaki Y, Kihira Y et al (2007) Development of a novel systemic gene delivery system for cancer therapy with a tumor-specific cleavable PEG-lipid. Gene Ther 14(1):68–77. https://doi.org/10.1038/sj.gt.3302843

    Article  CAS  PubMed  Google Scholar 

  24. Hatakeyama H, Ito E, Akita H, Oishi M, Nagasaki Y, Futaki S et al (2009) A pH-sensitive fusogenic peptide facilitates endosomal escape and greatly enhances the gene silencing of siRNA-containing nanoparticles in vitro and in vivo. J Control Release 139(2):127–132. https://doi.org/10.1016/j.jconrel.2009.06.008

    Article  CAS  PubMed  Google Scholar 

  25. Hatakeyama H, Akita H, Harashima H (2011a) A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: a strategy for overcoming the PEG dilemma. Adv Drug Deliv Rev 63(3):152–160. https://doi.org/10.1016/j.addr.2010.09.001

    Article  CAS  PubMed  Google Scholar 

  26. Hatakeyama H, Akita H, Ito E, Hayashi Y, Oishi M, Nagasaki Y et al (2011b) Systemic delivery of siRNA to tumors using a lipid nanoparticle containing a tumor-specific cleavable PEG-lipid. Biomaterials 32(18):4306–4316. https://doi.org/10.1016/j.biomaterials.2011.02.045

    Article  CAS  PubMed  Google Scholar 

  27. Hatakeyama H, Akita H, Harashima H (2013) The polyethyleneglycol dilemma: advantage and disadvantage of PEGylation of liposomes for systemic genes and nucleic acids delivery to tumors. Biol Pharm Bull 36(6):892–899

    Article  CAS  PubMed  Google Scholar 

  28. Hayashi Y, Yamauchi J, Khalil IA, Kajimoto K, Akita H, Harashima H (2011) Cell penetrating peptide-mediated systemic siRNA delivery to the liver. Int J Pharm 419(1–2):308–313. https://doi.org/10.1016/j.ijpharm.2011.07.038

    Article  CAS  PubMed  Google Scholar 

  29. Hayashi Y, Mizuno R, Ikramy KA, Akita H, Harashima H (2012) Pretreatment of hepatocyte growth factor gene transfer mediated by octaarginine peptide-modified nanoparticles ameliorates LPS/D-galactosamine-induced hepatitis. Nucleic Acid Ther 22(5):360–363. https://doi.org/10.1089/nat.2012.0352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Higashi T, Khalil IA, Maiti KK, Lee WS, Akita H, Harashima H et al (2009) Novel lipidated sorbitol-based molecular transporters for non-viral gene delivery. J Control Release 136(2):140–147. https://doi.org/10.1016/j.jconrel.2009.01.024

    Article  CAS  PubMed  Google Scholar 

  31. Hossen MN, Kajimoto K, Akita H, Hyodo M, Ishitsuka T, Harashima H (2013) Therapeutic assessment of cytochrome C for the prevention of obesity through endothelial cell-targeted nanoparticulate system. Mol Ther 21(3):533–541. https://doi.org/10.1038/mt.2012.256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Immordino ML, Dosio F, Cattel L (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 1(3):297–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Irvine DJ, Hanson MC, Rakhra K, Tokatlian T (2015) Synthetic nanoparticles for vaccines and immunotherapy. Chem Rev 115(19):11109–11146. https://doi.org/10.1021/acs.chemrev.5b00109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ishida T, Kirchmeier MJ, Moase EH, Zalipsky S, Allen TM (2001) Targeted delivery and triggered release of liposomal doxorubicin enhances cytotoxicity against human B lymphoma cells. Biochim Biophys Acta 1515(2):144–158

    Article  CAS  PubMed  Google Scholar 

  35. Ishitsuka T, Akita H, Harashima H (2011) Functional improvement of an IRQ-PEG-MEND for delivering genes to the lung. J Control Release 154(1):77–83. https://doi.org/10.1016/j.jconrel.2011.05.012

    Article  CAS  PubMed  Google Scholar 

  36. Kakudo T, Chaki S, Futaki S, Nakase I, Akaji K, Kawakami T et al (2004) Transferrin-modified liposomes equipped with a pH-sensitive fusogenic peptide: an artificial viral-like delivery system. Biochemistry 43(19):5618–5628. https://doi.org/10.1021/bi035802w

    Article  CAS  PubMed  Google Scholar 

  37. Kapadia CH, Perry JL, Tian S, Luft JC, DeSimone JM (2015) Nanoparticulate immunotherapy for cancer. J Control Release 219:167–180. https://doi.org/10.1016/j.jconrel.2015.09.062

    Article  CAS  PubMed  Google Scholar 

  38. Khalil IA, Harashima H (2018) An efficient PEGylated gene delivery system with improved targeting: synergism between octaarginine and a fusogenic peptide. Int J Pharm 538(1–2):179–187. https://doi.org/10.1016/j.ijpharm.2018.01.007

    Article  CAS  PubMed  Google Scholar 

  39. Khalil IA, Kogure K, Akita H, Harashima H (2006a) Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev 58(1):32–45. https://doi.org/10.1124/pr.58.1.8

    Article  CAS  PubMed  Google Scholar 

  40. Khalil IA, Kogure K, Futaki S, Harashima H (2006b) High density of octaarginine stimulates macropinocytosis leading to efficient intracellular trafficking for gene expression. J Biol Chem 281(6):3544–3551. https://doi.org/10.1074/jbc.M503202200

    Article  CAS  PubMed  Google Scholar 

  41. Khalil IA, Kogure K, Futaki S, Hama S, Akita H, Ueno M et al (2007) Octaarginine-modified multifunctional envelope-type nanoparticles for gene delivery. Gene Ther 14(8):682–689. https://doi.org/10.1038/sj.gt.3302910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Khalil IA, Kogure K, Futaki S, Harashima H (2008) Octaarginine-modified liposomes: enhanced cellular uptake and controlled intracellular trafficking. Int J Pharm 354(1–2):39–48. https://doi.org/10.1016/j.ijpharm.2007.12.003

    Article  CAS  PubMed  Google Scholar 

  43. Khalil IA, Hayashi Y, Mizuno R, Harashima H (2011) Octaarginine- and pH sensitive fusogenic peptide-modified nanoparticles for liver gene delivery. J Control Release 156(3):374–380. https://doi.org/10.1016/j.jconrel.2011.08.012

    Article  CAS  PubMed  Google Scholar 

  44. Khalil IA, Kimura S, Sato Y, Harashima H (2018) Synergism between a cell penetrating peptide and a pH-sensitive cationic lipid in efficient gene delivery based on double-coated nanoparticles. J Control Release 275:107–116. https://doi.org/10.1016/j.jconrel.2018.02.016

    Article  CAS  PubMed  Google Scholar 

  45. Kibria G, Hatakeyama H, Ohga N, Hida K, Harashima H (2011) Dual-ligand modification of PEGylated liposomes shows better cell selectivity and efficient gene delivery. J Control Release 153(2):141–148. https://doi.org/10.1016/j.jconrel.2011.03.012

    Article  CAS  PubMed  Google Scholar 

  46. Kibria G, Hatakeyama H, Ohga N, Hida K, Harashima H (2013) The effect of liposomal size on the targeted delivery of doxorubicin to integrin αvβ3-expressing tumor endothelial cells. Biomaterials 34(22):5617–5627. https://doi.org/10.1016/j.biomaterials.2013.03.094

    Article  CAS  PubMed  Google Scholar 

  47. Kogure K, Moriguchi R, Sasaki K, Ueno M, Futaki S, Harashima H (2004) Development of a non-viral multifunctional envelope-type nano device by a novel lipid film hydration method. J Control Release 98(2):317–323. https://doi.org/10.1016/j.jconrel.2004.04.024

    Article  CAS  PubMed  Google Scholar 

  48. Kogure K, Akita H, Harashima H (2007) Multifunctional envelope-type nano device for non-viral gene delivery: concept and application of programmed packaging. J Control Release 122(3):246–251. https://doi.org/10.1016/j.jconrel.2007.06.018

    Article  CAS  PubMed  Google Scholar 

  49. Kogure K, Akita H, Yamada Y, Harashima H (2008) Multifunctional envelope-type nano device (MEND) as a non-viral gene delivery system. Adv Drug Deliv Rev 60(4–5):559–571. https://doi.org/10.1016/j.addr.2007.10.007

    Article  CAS  PubMed  Google Scholar 

  50. Kulkarni PS, Haldar MK, Nahire RR, Katti P, Ambre AH, Muhonen WW et al (2014) Mmp-9 responsive PEG cleavable nanovesicles for efficient delivery of chemotherapeutics to pancreatic cancer. Mol Pharm 11(7):2390–2399. https://doi.org/10.1021/mp500108p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kusumoto K, Akita H, Ishitsuka T, Matsumoto Y, Nomoto T, Furukawa R et al (2013) Lipid envelope-type nanoparticle incorporating a multifunctional peptide for systemic siRNA delivery to the pulmonary endothelium. ACS Nano 7(9):7534–7541. https://doi.org/10.1021/nn401317t

    Article  CAS  PubMed  Google Scholar 

  52. Kusumoto K, Akita H, Santiwarangkool S, Harashima H (2014) Advantages of ethanol dilution method for preparing GALA-modified liposomal siRNA carriers on the in vivo gene knockdown efficiency in pulmonary endothelium. Int J Pharm 473(1–2):144–147. https://doi.org/10.1016/j.ijpharm.2014.07.007

    Article  CAS  PubMed  Google Scholar 

  53. Lamm DL, van der Meijden PM, Morales A, Brosman SA, Catalona WJ, Herr HW et al (1992) Incidence and treatment of complications of bacillus Calmette-Guerin intravesical therapy in superficial bladder cancer. J Urol 147(3):596–600

    Article  CAS  PubMed  Google Scholar 

  54. Li W, Nicol F, Szoka FC (2004) GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery. Adv Drug Deliv Rev 56(7):967–985. https://doi.org/10.1016/j.addr.2003.10.041

    Article  CAS  PubMed  Google Scholar 

  55. Li W, Huang Z, MacKay JA, Grube S, Szoka FC (2005) Low-pH-sensitive poly(ethylene glycol) (PEG)-stabilized plasmid nanolipoparticles: effects of PEG chain length, lipid composition and assembly conditions on gene delivery. J Gene Med 7(1):67–79. https://doi.org/10.1002/jgm.634

    Article  CAS  PubMed  Google Scholar 

  56. Maeda H, Sawa T, Konno T (2001) Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release 74(1–3):47–61

    Article  CAS  PubMed  Google Scholar 

  57. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Pt 1):6387–6392

    CAS  PubMed  Google Scholar 

  58. Mishra S, Webster P, Davis ME (2004) PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur J Cell Biol 83(3):97–111. https://doi.org/10.1078/0171-9335-00363

    Article  CAS  PubMed  Google Scholar 

  59. Miyabe H, Hyodo M, Nakamura T, Sato Y, Hayakawa Y, Harashima H (2014) A new adjuvant delivery system 'cyclic di-GMP/YSK05 liposome' for cancer immunotherapy. J Control Release 184:20–27. https://doi.org/10.1016/j.jconrel.2014.04.004

    Article  CAS  PubMed  Google Scholar 

  60. Moriguchi R, Kogure K, Akita H, Futaki S, Miyagishi M, Taira K et al (2005) A multifunctional envelope-type nano device for novel gene delivery of siRNA plasmids. Int J Pharm 301(1–2):277–285. https://doi.org/10.1016/j.ijpharm.2005.05.021

    Article  CAS  PubMed  Google Scholar 

  61. Mudhakir D, Akita H, Khalil IA, Futaki S, Harashima H (2005) Pharmacokinetic analysis of the tissue distribution of octaarginine modified liposomes in mice. Drug Metab Pharmacokinet 20(4):275–281

    Article  CAS  PubMed  Google Scholar 

  62. Mudhakir D, Akita H, Tan E, Harashima H (2008) A novel IRQ ligand-modified nano-carrier targeted to a unique pathway of caveolar endocytic pathway. J Control Release 125(2):164–173. https://doi.org/10.1016/j.jconrel.2007.10.020

    Article  CAS  PubMed  Google Scholar 

  63. Nakamura Y, Kogure K, Yamada Y, Futaki S, Harashima H (2006) Significant and prolonged antisense effect of a multifunctional envelope-type nano device encapsulating antisense oligodeoxynucleotide. J Pharm Pharmacol 58(4):431–437. https://doi.org/10.1211/jpp.58.4.0002

    Article  CAS  PubMed  Google Scholar 

  64. Nakamura Y, Kogure K, Futaki S, Harashima H (2007) Octaarginine-modified multifunctional envelope-type nano device for siRNA. J Control Release 119(3):360–367. https://doi.org/10.1016/j.jconrel.2007.03.010

    Article  CAS  PubMed  Google Scholar 

  65. Nakamura T, Moriguchi R, Kogure K, Shastri N, Harashima H (2008) Efficient MHC class I presentation by controlled intracellular trafficking of antigens in octaarginine-modified liposomes. Mol Ther 16(8):1507–1514. https://doi.org/10.1038/mt.2008.122

    Article  CAS  PubMed  Google Scholar 

  66. Nakamura T, Moriguchi R, Kogure K, Harashima H (2013) Incorporation of polyinosine-polycytidylic acid enhances cytotoxic T cell activity and antitumor effects by octaarginine-modified liposomes encapsulating antigen, but not by octaarginine-modified antigen complex. Int J Pharm 441(1–2):476–481. https://doi.org/10.1016/j.ijpharm.2012.11.006

    Article  CAS  PubMed  Google Scholar 

  67. Nakamura T, Fukiage M, Higuchi M, Nakaya A, Yano I, Miyazaki J et al (2014a) Nanoparticulation of BCG-CWS for application to bladder cancer therapy. J Control Release 176:44–53. https://doi.org/10.1016/j.jconrel.2013.12.027

    Article  CAS  PubMed  Google Scholar 

  68. Nakamura T, Fukiage M, Suzuki Y, Yano I, Miyazaki J, Nishiyama H et al (2014b) Mechanism responsible for the antitumor effect of BCG-CWS using the LEEL method in a mouse bladder cancer model. J Control Release 196:161–167. https://doi.org/10.1016/j.jconrel.2014.10.007

    Article  CAS  PubMed  Google Scholar 

  69. Nakamura T, Ono K, Suzuki Y, Moriguchi R, Kogure K, Harashima H (2014c) Octaarginine-modified liposomes enhance cross-presentation by promoting the C-terminal trimming of antigen peptide. Mol Pharm 11(8):2787–2795. https://doi.org/10.1021/mp500147y

    Article  CAS  PubMed  Google Scholar 

  70. Nakamura T, Miyabe H, Hyodo M, Sato Y, Hayakawa Y, Harashima H (2015) Liposomes loaded with a STING pathway ligand, cyclic di-GMP, enhance cancer immunotherapy against metastatic melanoma. J Control Release 216:149–157. https://doi.org/10.1016/j.jconrel.2015.08.026

    Article  CAS  PubMed  Google Scholar 

  71. Nakamura T, Kuroi M, Fujiwara Y, Warashina S, Sato Y, Harashima H (2016) Small-sized, stable lipid nanoparticle for the efficient delivery of siRNA to human immune cell lines. Sci Rep 6:37849. https://doi.org/10.1038/srep37849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nakamura T, Yamada K, Fujiwara Y, Sato Y, Harashima H (2018) Reducing the cytotoxicity of lipid nanoparticles associated with a Fusogenic cationic lipid in a natural killer cell line by introducing a Polycation-based siRNA Core. Mol Pharm 15(6):2142–2150. https://doi.org/10.1021/acs.molpharmaceut.7b01166

    Article  CAS  PubMed  Google Scholar 

  73. Nakase I, Kogure K, Harashima H, Futaki S (2011) Application of a fusiogenic peptide GALA for intracellular delivery. Methods Mol Biol 683:525–533. https://doi.org/10.1007/978-1-60761-919-2_37

    Article  CAS  PubMed  Google Scholar 

  74. Napoli A, Boerakker MJ, Tirelli N, Nolte RJ, Sommerdijk NA, Hubbell JA (2004) Glucose-oxidase based self-destructing polymeric vesicles. Langmuir 20(9):3487–3491

    Article  CAS  PubMed  Google Scholar 

  75. Redelman-Sidi G, Glickman MS, Bochner BH (2014) The mechanism of action of BCG therapy for bladder cancer--a current perspective. Nat Rev Urol 11(3):153–162. https://doi.org/10.1038/nrurol.2014.15

    Article  CAS  PubMed  Google Scholar 

  76. Remaut K, Lucas B, Braeckmans K, Demeester J, De Smedt SC (2007) Pegylation of liposomes favours the endosomal degradation of the delivered phosphodiester oligonucleotides. J Control Release 117(2):256–266. https://doi.org/10.1016/j.jconrel.2006.10.029

    Article  CAS  PubMed  Google Scholar 

  77. Sakurai Y, Hatakeyama H, Sato Y, Hyodo M, Akita H, Ohga N et al (2014) RNAi-mediated gene knockdown and anti-angiogenic therapy of RCCs using a cyclic RGD-modified liposomal-siRNA system. J Control Release 173:110–118. https://doi.org/10.1016/j.jconrel.2013.10.003

    Article  CAS  PubMed  Google Scholar 

  78. Sakurai Y, Matsuda T, Hada T, Harashima H (2015) Efficient packaging of plasmid DNA using a pH sensitive cationic lipid for delivery to hepatocytes. Biol Pharm Bull 38(8):1185–1191. https://doi.org/10.1248/bpb.b15-00138

    Article  CAS  PubMed  Google Scholar 

  79. Santiwarangkool S, Akita H, Nakatani T, Kusumoto K, Kimura H, Suzuki M et al (2017) PEGylation of the GALA peptide enhances the lung-targeting activity of Nanocarriers that contain encapsulated siRNA. J Pharm Sci 106(9):2420–2427. https://doi.org/10.1016/j.xphs.2017.04.075

    Article  CAS  PubMed  Google Scholar 

  80. Sasaki K, Kogure K, Chaki S, Kihira Y, Ueno M, Harashima H (2005) Construction of a multifunctional envelope-type nano device by a SUV∗-fusion method. Int J Pharm 296(1–2):142–150. https://doi.org/10.1016/j.ijpharm.2005.02.020

    Article  CAS  PubMed  Google Scholar 

  81. Sato Y, Hatakeyama H, Sakurai Y, Hyodo M, Akita H, Harashima H (2012) A pH-sensitive cationic lipid facilitates the delivery of liposomal siRNA and gene silencing activity in vitro and in vivo. J Control Release 163(3):267–276. https://doi.org/10.1016/j.jconrel.2012.09.009

    Article  CAS  PubMed  Google Scholar 

  82. Sato Y, Hatakeyama H, Hyodo M, Harashima H (2016a) Relationship between the physicochemical properties of lipid nanoparticles and the quality of siRNA delivery to liver cells. Mol Ther 24(4):788–795. https://doi.org/10.1038/mt.2015.222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sato Y, Note Y, Maeki M, Kaji N, Baba Y, Tokeshi M et al (2016b) Elucidation of the physicochemical properties and potency of siRNA-loaded small-sized lipid nanoparticles for siRNA delivery. J Control Release 229:48–57. https://doi.org/10.1016/j.jconrel.2016.03.019

    Article  CAS  PubMed  Google Scholar 

  84. Sato Y, Matsui H, Yamamoto N, Sato R, Munakata T, Kohara M et al (2017) Highly specific delivery of siRNA to hepatocytes circumvents endothelial cell-mediated lipid nanoparticle-associated toxicity leading to the safe and efficacious decrease in the hepatitis B virus. J Control Release 266:216–225. https://doi.org/10.1016/j.jconrel.2017.09.044

    Article  CAS  PubMed  Google Scholar 

  85. Sato Y, Matsui H, Sato R, Harashima H (2018) Neutralization of negative charges of siRNA results in improved safety and efficient gene silencing activity of lipid nanoparticles loaded with high levels of siRNA. J Control Release 284:179–187. https://doi.org/10.1016/j.jconrel.2018.06.017

    Article  CAS  PubMed  Google Scholar 

  86. Shaheen SM, Akita H, Nakamura T, Takayama S, Futaki S, Yamashita A et al (2011) KALA-modified multi-layered nanoparticles as gene carriers for MHC class-I mediated antigen presentation for a DNA vaccine. Biomaterials 32(26):6342–6350. https://doi.org/10.1016/j.biomaterials.2011.05.014

    Article  CAS  PubMed  Google Scholar 

  87. Shin J, Shum P, Thompson DH (2003) Acid-triggered release via dePEGylation of DOPE liposomes containing acid-labile vinyl ether PEG-lipids. J Control Release 91(1–2):187–200

    Article  CAS  PubMed  Google Scholar 

  88. Spranger S (2016) Mechanisms of tumor escape in the context of the T-cell-inflamed and the non-T-cell-inflamed tumor microenvironment. Int Immunol 28(8):383–391. https://doi.org/10.1093/intimm/dxw014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Takahashi Y, Nishikawa M, Takakura Y (2009) Nonviral vector-mediated RNA interference: its gene silencing characteristics and important factors to achieve RNAi-based gene therapy. Adv Drug Deliv Rev 61(9):760–766. https://doi.org/10.1016/j.addr.2009.04.006

    Article  CAS  PubMed  Google Scholar 

  90. Takara K, Hatakeyama H, Ohga N, Hida K, Harashima H (2010) Design of a dual-ligand system using a specific ligand and cell penetrating peptide, resulting in a synergistic effect on selectivity and cellular uptake. Int J Pharm 396(1–2):143–148. https://doi.org/10.1016/j.ijpharm.2010.05.002

    Article  CAS  PubMed  Google Scholar 

  91. Takara K, Hatakeyama H, Kibria G, Ohga N, Hida K, Harashima H (2012) Size-controlled, dual-ligand modified liposomes that target the tumor vasculature show promise for use in drug-resistant cancer therapy. J Control Release 162(1):225–232. https://doi.org/10.1016/j.jconrel.2012.06.019

    Article  CAS  PubMed  Google Scholar 

  92. Tam YY, Chen S, Cullis PR (2013) Advances in lipid nanoparticles for siRNA delivery. Pharmaceutics 5(3):498–507. https://doi.org/10.3390/pharmaceutics5030498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tanaka H, Akita H, Ishiba R, Tange K, Arai M, Kubo K et al (2014) Neutral biodegradable lipid-envelope-type nanoparticle using vitamin A-scaffold for nuclear targeting of plasmid DNA. Biomaterials 35(5):1755–1761. https://doi.org/10.1016/j.biomaterials.2013.11.016

    Article  CAS  PubMed  Google Scholar 

  94. Terada T, Iwai M, Kawakami S, Yamashita F, Hashida M (2006) Novel PEG-matrix metalloproteinase-2 cleavable peptide-lipid containing galactosylated liposomes for hepatocellular carcinoma-selective targeting. J Control Release 111(3):333–342. https://doi.org/10.1016/j.jconrel.2005.12.023

    Article  CAS  PubMed  Google Scholar 

  95. Trombetta ES, Mellman I (2005) Cell biology of antigen processing in vitro and in vivo. Annu Rev Immunol 23:975–1028. https://doi.org/10.1146/annurev.immunol.22.012703.104538

    Article  CAS  PubMed  Google Scholar 

  96. Uenishi Y, Kawabe K, Nomura T, Nakai M, Sunagawa M (2009) Morphological study on Mycobacterium bovis BCG Tokyo 172 cell wall skeleton (SMP-105). J Microbiol Methods 77(2):139–144. https://doi.org/10.1016/j.mimet.2009.01.019

    Article  CAS  PubMed  Google Scholar 

  97. Ukawa M, Akita H, Hayashi Y, Ishiba R, Tange K, Arai M et al (2014) Neutralized nanoparticle composed of SS-cleavable and pH-activated lipid-like material as a long-lasting and liver-specific gene delivery system. Adv Healthc Mater 3(8):1222–1229. https://doi.org/10.1002/adhm.201300629

    Article  CAS  PubMed  Google Scholar 

  98. Warashina S, Nakamura T, Sato Y, Fujiwara Y, Hyodo M, Hatakeyama H et al (2016) A lipid nanoparticle for the efficient delivery of siRNA to dendritic cells. J Control Release 225:183–191. https://doi.org/10.1016/j.jconrel.2016.01.042

    Article  CAS  PubMed  Google Scholar 

  99. Watanabe T, Hatakeyama H, Matsuda-Yasui C, Sato Y, Sudoh M, Takagi A et al (2014) In vivo therapeutic potential of dicer-hunting siRNAs targeting infectious hepatitis C virus. Sci Rep 4:4750. https://doi.org/10.1038/srep04750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Woo SR, Fuertes MB, Corrales L, Spranger S, Furdyna MJ, Leung MY et al (2014) STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41(5):830–842. https://doi.org/10.1016/j.immuni.2014.10.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Xu D, Jin G, Chai D, Zhou X, Gu W, Chong Y et al (2018) The development of CAR design for tumor CAR-T cell therapy. Oncotarget 9(17):13991–14004. https://doi.org/10.18632/oncotarget.24179

    Article  PubMed  PubMed Central  Google Scholar 

  102. Yamada Y, Kogure K, Nakamura Y, Inoue K, Akita H, Nagatsugi F et al (2005) Development of efficient packaging method of oligodeoxynucleotides by a condensed nano particle in lipid envelope structure. Biol Pharm Bull 28(10):1939–1942

    Article  CAS  PubMed  Google Scholar 

  103. Yamamoto N, Sato Y, Munakata T, Kakuni M, Tateno C, Sanada T et al (2016) Novel pH-sensitive multifunctional envelope-type nanodevice for siRNA-based treatments for chronic HBV infection. J Hepatol 64(3):547–555. https://doi.org/10.1016/j.jhep.2015.10.014

    Article  CAS  PubMed  Google Scholar 

  104. Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG (2014) Non-viral vectors for gene-based therapy. Nat Rev Genet 15(8):541–555. https://doi.org/10.1038/nrg3763

    Article  CAS  PubMed  Google Scholar 

  105. Zalipsky S, Qazen M, Walker JA, Mullah N, Quinn YP, Huang SK (1999) New detachable poly(ethylene glycol) conjugates: cysteine-cleavable lipopolymers regenerating natural phospholipid, diacyl phosphatidylethanolamine. Bioconjug Chem 10(5):703–707

    Article  CAS  PubMed  Google Scholar 

  106. Zheng J, Wan Y, Elhissi A, Zhang Z, Sun X (2014) Targeted paclitaxel delivery to tumors using cleavable PEG-conjugated solid lipid nanoparticles. Pharm Res 31(8):2220–2233. https://doi.org/10.1007/s11095-014-1320-8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Special Education and Research Expenses from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) - Japan. We wish to thank Dr. Milton Feather for his helpful advice in editing the English in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyoshi Harashima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Japan KK, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khalil, I.A., Hatakeyama, H., Nakamura, T., Harashima, H. (2019). A Multifunctional Envelope-Type Nano Device for Cancer Therapy. In: Matsumura, Y., Tarin, D. (eds) Cancer Drug Delivery Systems Based on the Tumor Microenvironment. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56880-3_10

Download citation

Publish with us

Policies and ethics