Skip to main content

Stem Cell Purification on a Cell-Compatible, Cell-Specific Biointerface

  • Chapter
  • First Online:
Molecular Soft-Interface Science

Abstract

Our bodies are composed of numerous different cell types. One fertilized ovum divides until maturation, and then organs are formed from these matured cells. Stem cells, which are present even in mature tissues, such as bone marrow and fat tissue, supply tissues and organs with progenitor and mature cells. Recently, stem cell-based tissue engineering has been investigated as a new therapeutic strategy (Langer and Vacanti in Science 260:920–926, [1]) in which stem cell differentiation and proliferation are controlled to regenerate the structure and function of an organ based on cell engineering and biomaterial science techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  CAS  Google Scholar 

  2. Thomson JA, Itskovitz-Eldor J et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  Google Scholar 

  3. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:633–676

    Article  Google Scholar 

  4. Pittenger MF, Mackay AM et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  Google Scholar 

  5. Engler AJ, Sen S et al (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  CAS  Google Scholar 

  6. Young JL, Engler AJ (2011) Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro. Biomaterials 32:1002–1009

    Article  CAS  Google Scholar 

  7. Bearzi C, Rota M et al (2007) Human cardiac stem cells Proc Natl Acad Sci U S A. 104:14068–14073

    Article  CAS  Google Scholar 

  8. Miskon A, Mahara A et al (2010) A suspension induction for myocardial differentiation of rat mesenchymal stem cells on various ECM proteins Tissue Eng Part C 16:979–987

    Google Scholar 

  9. Miskon A, Ehashi T et al (2009) Beating behavior of primary neonatal cardiomyocytes and cardiac-differentiated P19CL6 cells on different extramatrix components. J Art Org 12:111–117

    Google Scholar 

  10. Phinney DG, Hill K et al (2006) Biological activities encoded by the murine mesenchymal stem cell transcriptome provide a basis for their developmental potential and broad therapeutic efficacy StemCells 24:186–198

    Google Scholar 

  11. Fulwyler (1965) Electronic separatin of biological cells by volume Science 150:910–911

    Article  CAS  Google Scholar 

  12. Molday RS, Yen SPS, Rembarum A (1977) Application of magnetic microspheres in labeling and separation of cells. Nature 268:437–438

    Article  CAS  Google Scholar 

  13. Osawa M, Hanada K et al (1996) Long-term lymphohematopoietic reconstituteion by a single CD34-low/negative hematopoietic stem cell Science 273:242–245

    Article  CAS  Google Scholar 

  14. Hammer DA, Lauffenburger DA (1987) A dynamic model for receptor-mediated cell adhesion to surfaces. Biophys J 52:475–487

    Article  CAS  Google Scholar 

  15. Von Andrian UH, Chambers JD et al (1991) Two-step model of leukocyte-endothelial cell interaction in inflammation: distinct roles for LECAM-1 and the leukocyte beta 2 integrins ni vivo Pro Natl Acad Sci USA 88:7538–7542

    Google Scholar 

  16. Hanley WD, Wirtz D, Konstantopoulos K (2004) Distinct kinetic and mechanical properties govern selectin-leukocyte interactions. J Cell Sci 117:2503–2511

    Article  CAS  Google Scholar 

  17. Omolola EA, Hammer DA (2005) vitro characterization of leukocyte mimetic for targeting therapiutics to the endothelium using two receptors. Biomaterials 26:7136–7144

    Article  Google Scholar 

  18. Greenberg AW, Hammer DA (2001) Cell separaion mediated by differential rolling adhesion. Biotechnol Bioeng 73:111–124

    Article  CAS  Google Scholar 

  19. Mahara A, Yamaoka T (2010) Antibody-immobilized column for quick cell separation based on cell rolling. Biotechnol Prog 26:441–447

    CAS  Google Scholar 

  20. Greenberg AW, Kerr WG, Hammer DA (2000) Relationship between selectin-mediated rolling of hematopoietic stem and progenitor cells and progression in hematopoietic development. Blood 95:478–486

    CAS  Google Scholar 

  21. Wieczoreck G, Steinhoff C et al (2003) Gene expression profile of mouse bone marrow stromal cells determined by cDNA microarray analysis. Cell Tissue Res 311:227–237

    Google Scholar 

  22. Mahara A, Yamaoka T (2010) Continuous separation of cells of high osteoblastic differentiation potential from mesenchymal stem cells on an antibody-immobilized column. Biomaterials 31:4231–4237

    Article  CAS  Google Scholar 

  23. Gojo S, Gojo N et al (2003) vivo cardiovasculogenesis by direct injection of isolated adult mesenchymal stem cells. Exp Cell Res 288:51–59

    Article  CAS  Google Scholar 

  24. Komori T, Yagi H et al (1997) Targeted disruption of cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts Cell 89:755–764

    Article  CAS  Google Scholar 

  25. Chen JL, Hunt P et al (1987) Osteoblast precursor cells are found in CD34 + cells from human bone marrow Stem Cells 15:368–377

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuji Yamaoka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Japan KK, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahara, A., Yamaoka, T. (2019). Stem Cell Purification on a Cell-Compatible, Cell-Specific Biointerface. In: Maeda, M., Takahara, A., Kitano, H., Yamaoka, T., Miura, Y. (eds) Molecular Soft-Interface Science. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56877-3_15

Download citation

Publish with us

Policies and ethics