Skip to main content

Bio- and Chemical Sensors and Role of Soft Interface

  • Chapter
  • First Online:
Molecular Soft-Interface Science
  • 495 Accesses

Abstract

The methodology of the evaluation of surface materials, surface modification layers, and sensing methods for bio/chemical molecules detection is described. In this chapter, the most important, widely used, highly sensitive, and user-friendly sensing methods for surface evaluation technology are introduced. Surface plasmon resonance measurement (SPR), quartz crystal microbalance (QCM), electrochemical measurement (cyclic voltammetry (CV) and others), the field-effect transistor (FET) method, and other methods for evaluating molecular affinities and detecting limited target molecules are taken up and role of soft interface for bio- and chemical sensors is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marx KA (2003) Quartz Crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface. Biomacromolecules 4:1099–1120, and references are therein

    Article  CAS  Google Scholar 

  2. Dahlin AB, Jønsson PM, Schmid E, Zhou Y, Hook F (2008) Synchronized quartz crystal microbalance and Nanoplasmonic sensing of biomolecular recognition reactions. ACS Nano 2:2174–2182

    Article  CAS  Google Scholar 

  3. Muller MT, Yan X, Lee S, Perry SS, Spencer ND (2005) Lubrication properties of a brushlike copolymer as a function of the amount of solvent absorbed within the brush. Macromolecules 38:5706–5713

    Article  Google Scholar 

  4. Irwin EF, Ho JE, Kane SR, Healy KE (2005) Analysis of interpenetrating polymer networks via quartz crystal microbalance with dissipation monitoring. Langmuir 21:5529–5536

    Article  CAS  Google Scholar 

  5. Bonroy K, Friedt JM, Frederix F, Laureyn W, Langerock S, Campitelli A, Sara M, Borghs G, Goddeeris B, Declerck P (2004) Realization and characterization of porous gold for increased protein coverage on acoustic sensors. Anal Chem 76:4299–4306

    Article  CAS  Google Scholar 

  6. Fogel R, Mashazi P, Nyokong T, Limson J (2007) Critical assessment of the quarts crystal microbalance with dissipation as an analytical tool for biosensor development and fundamental studies: metallophthalocyanine-glucose oxidase biocomposit sensors. Biosens Bioelectron 23:95–101

    Article  CAS  Google Scholar 

  7. Shimazu K, Yagi I, Sato Y, Uosaki K (1992) In situ and dynamic monitoring of the self-assembling and redox processes of a ferrocenylundecanethiol monolayer by electrochemical quarts crystal microbalance. Langmuir 8:1385–1387

    Article  CAS  Google Scholar 

  8. Shimazu K, Sato Y, Yagi I, Uosaki K (1994) Packing state and stability of self-assembled monolayers of 11-Ferrocenyl-1-undecanethiol on platinum electrodes. Bull Chem Soc Jpn 67:863–865

    Article  CAS  Google Scholar 

  9. Shimazu K, Ye S, Sato Y, Uosaki K (1994) Simultaneous detection of structural change and mass transport accompanying the redox of a ferrocenylundecanethiol monolayer with the novel ft-ir reflection adsorption spectroscopy/electrochemical quartz crystal microbalance combined system. J Electroanal Chem 375:409–413

    Article  CAS  Google Scholar 

  10. Sato Y, Mizutani F, Shimazu K, Ye S, Uosaki K (1997) Mass transport accompanied with electron transfer between the gold electrode modified with 11-Ferrocenylundecanethiol monolayer and redox species in solution—an electrochemical quartz crystal microbalance study. J Electroanal Chem 434:115–119

    Article  CAS  Google Scholar 

  11. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biochemical species. Chem Rev 108:462–493 and references therein

    Article  CAS  Google Scholar 

  12. Iwasaki Y, Horiuchi T, Niwa O (2001) Detection of electrochemical enzymatic reactions by surface plasmon resonance measurement. Anal Chem 73:1595–1598

    Article  CAS  Google Scholar 

  13. Bin Y, Fu Q, Hou Y, Xiang J (2013) Real-time composition and deposition depth profile of metal alloys using electrochemical surface plasmon resonance. J Electroanal Chem 699:10–13

    Article  CAS  Google Scholar 

  14. Walczak MM, Popenoe DD, Deinhammer RS, Lamp BD, Chung C, Porter MD (1991) Reductive desorption of alkanethiolate monolayers at gold: a measure of surface coverage. Langmuir 7:2687–2693

    Article  CAS  Google Scholar 

  15. Weisshaar DE, Walczak MM, Porter MD (1993) Electrochemically induced transformations of monolayers formed by self-assembly of mercaptoethanol at gold. Langmuir 9:323–329

    Article  CAS  Google Scholar 

  16. Widrig CA, Chung C, Porter MD (1991) The electrochemical desorption of n-alkanethiol monolayers from polycrystalline gold and silver electrodes. J Electroanal Chem 310:335–359

    Article  CAS  Google Scholar 

  17. Sato Y, Mizutani F (2000) Electrochemical responses of cytochrome c on gold electrodes modified with nucleic acid base electrochimica acta 45:2869–2875

    CAS  Google Scholar 

  18. Sato Y, Ishikawa Y, Matsuura H, Uosaki K, Mizutani F, Niwa O (2005) Highly-sensitive detection of 6-mercaptopurine and its metabolites by electrochemical reductive desorption measurements. Electroanalysis 17:965–968

    Article  CAS  Google Scholar 

  19. Imabayashi SI, Hobara D, Kakiuchi T (2001) Voltammetric detection of the surface diffusion of adsorbed thiolate molecules in artificially phase-separated binary self-assembled monolayers on a Au(111) surface. Langmuir 17:2560–2563

    Article  CAS  Google Scholar 

  20. Hobara D, Ota M, Imabayashi SI, Niki K, Kakiuchi T (1998) Phase separation of binary self-assembled thiol monolayers composed of 1-Hexadecanethiol and 3-Mercaptopropionic Acid on Au(111) studies by scanning tunnering microscopy and cyclic voltammetry. J Electroanal Chem 444:113–119

    Article  CAS  Google Scholar 

  21. Sato Y, Niwa O, Mizutani F (2007) Hydrogen bonding interaction between aminopurinethiol-monolayers and oligonucleotides by QCM and XPS measurements. Sensors Actuators B 121:214–218

    Article  CAS  Google Scholar 

  22. Shi H, Song Z, Huang J, Yang Y, Zhao Z, Anzai JI, Osa T, Chen Q (2005) Effects of the type of polycation in the coating films prepared by a Layer-by-Layer desorption technique on the properties of amperometric choline sensors. Sens Actuators B 109:341–347

    Article  CAS  Google Scholar 

  23. Sato Y, Yoshioka K, Tanaka M, Murakami T, Ishida NM, Niwa O (2008) Recognition of lectin with a high signal to noise ratio: carbohydrate-tri(ethylene glycol)-Alkanethiol Co-adsorbed monolayer. Chem Commun 4909–4911

    Google Scholar 

  24. Yoshioka K, Sato Y, Tanaka M, Murakami T, Niwa O (2010) Suppression of non-specific adsorption using densified tri(ethylene glycol) alkanethiols: monolayer characteristics evaluated by electrochemical measurements. Anal Sci 26:33–37

    Article  CAS  Google Scholar 

  25. Joo S, Brown RB (2008) Chemical sensors its integrated electronics. Chem Rev 108:638–651

    Article  CAS  Google Scholar 

  26. Schoning MJ, Poghossian A (2002) Recent advances in biologically sensitive field-effect transistors. Analyst 127:1137–1151 and references therein

    Article  Google Scholar 

  27. Yumusak C, Singh TB, Sariciftci NS, Grote JG (2009) Bio-organic field effect transistors based on Crosslinked deoxyribonucleic Acid (DNA) gate dielectric app. Phys Lett 95:2633034

    Google Scholar 

  28. Goda T, Miyahara Y (2012) Interpretation of protein adsorption through its intrinsic electric charges: a comparative study using a field-effect transistor, surface plasmon resonance, and quartz crystal microbalance. Langmuir 28:14730–14738

    Article  CAS  Google Scholar 

  29. Kim A, Ah CS, Park CW, Yang JH, Kim T, Ahn CG, Park SH, Sung GY (2010) Direct label-free electrical immunodetection in human serum using a flow-through-apparatus approach with integrated field-effect transistors. Biosens Bioelectron 25:1767–1773

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukari Sato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Japan KK, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sato, Y. (2019). Bio- and Chemical Sensors and Role of Soft Interface. In: Maeda, M., Takahara, A., Kitano, H., Yamaoka, T., Miura, Y. (eds) Molecular Soft-Interface Science. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56877-3_13

Download citation

Publish with us

Policies and ethics