Part of the Springer Geophysics book series (SPRINGERGEOPHYS)


Tsunami research has been advanced by developments in theory and in the methods of observation. Coastal records such as tide gauges and inundation surveys have played an important role for a long time. Offshore observations have been undertaken widely across deep oceans. After the 2011 Tohoku-Oki earthquake, dense and wide offshore tsunami observation was begun. We now expect tsunami generation to be observed inside the focal areas of huge earthquakes. New observations require new theoretical frameworks. In Sect. 1.1, we briefly introduce the development of offshore observation using ocean-bottom pressure gauges. Section 1.2 illustrates the 2011 Tohoku-Oki earthquake tsunami. This is to show what we know and what we do not know about that huge earthquake and tsunami. Section 1.3 introduces a new observation network that was deployed after the Tohoku-Oki earthquake. This observation network is designed for the detection of tsunamis inside the focal area. In Sect. 1.4, we present the focus of this book. The wide use of ocean-bottom pressure gauges and the construction of new observation network can greatly advance our understanding of tsunami. This book is aimed to illustrate theoretical frameworks in analyzing these records.


Fluid dynamics Elastic dynamics Offshore observations The 2011 Tohoku-Oki earthquake 


  1. Baba T, Hirata K, Kaneda Y (2004) Tsunami magnitudes determined from ocean-bottom pressure gauge data around Japan. Geophys Res Lett 31:L08303. CrossRefGoogle Scholar
  2. Baba T, Hirata K, Hori T, Sakaguchi H (2006) Offshore geodetic data conducive to the estimation of the afterslip distribution following the 2003 Tokachi-oki earthquake. Earth Planet Sci Lett 241(1):281–292. CrossRefGoogle Scholar
  3. Bernard EN, Meinig C (2011) History and future of deep-ocean tsunami measurements. In: Proceedings of Oceans’11 MTS/IEEE, Kona. IEEE, Piscataway, NJ, 19–22 September, 2011Google Scholar
  4. Eguchi T, Fujinawa Y, Fujita E, Iwasaki S, Watanabe I, Fujiwara H (1998) A real-time observation network of ocean-bottom-seismometers deployed at the Sagami trough subduction zone, Central Japan. Mar Geophys Res 20:73–94CrossRefGoogle Scholar
  5. Filloux JH (1982) Tsunami recorded on the open ocean floor. Geophys Res Lett 9(1):25–28. CrossRefGoogle Scholar
  6. Fujii Y, Satake K, Sakai S, Shinohara M, Kanazawa T (2011) Tsunami source of the 2011 off the Pacific coast of Tohoku earthquake. Earth Planet Sp 63(7):55. CrossRefGoogle Scholar
  7. Furumura T, Takemura S, Noguchi S, Takemoto T, Maeda T, Iwai K, Padhy S (2011) Strong ground motions from the 2011 off-the Pacific-Coast-of-Tohoku, Japan (Mw = 9.0) earthquake obtained from a dense nationwide seismic network. Landslides 8(3):333. CrossRefGoogle Scholar
  8. Geist EL (1998) Local tsunamis and earthquake source parameters. Adv Geophys 39:117–209. CrossRefGoogle Scholar
  9. Hashimoto C, Noda A, Sagiya T, Matsu'ura M (2009) Interplate seismogenic zones along the Kuril-Japan trench inferred from GPS data inversion. Nat Geosci 2:141–144. CrossRefGoogle Scholar
  10. Hirata K et al (2002) Real-time geophysical measurements on the deep seafloor using submarine cable in the southern Kurile subduction zone. IEEE J Ocean Eng 27(2):170–181. CrossRefGoogle Scholar
  11. Imamura A (1934) Past tsunamis of the Sanriku coast. Jpn J Astron Geophys 11:79–93Google Scholar
  12. Inazu D, Saito T (2013) Simulation of distant tsunami propagation with a radial loading deformation effect. Earth Planet Sp 65(8):835–842. CrossRefGoogle Scholar
  13. Inazu D, Waseda T, Hibiya T, Ohta Y (2016) Assessment of GNSS-based height data of multiple ships for measuring and forecasting great tsunamis. Geosci Lett 3:25. CrossRefGoogle Scholar
  14. Kato T et al (2000) Real-time observation of tsunami by RTK-GPS. Earth Planet Sp 52(10):841–845. CrossRefGoogle Scholar
  15. Koketsu K et al (2011) A unified source model for the 2011 Tohoku earthquake. Earth Planet Sci Lett 310(3):480–487. CrossRefGoogle Scholar
  16. Levin BW, Nosov M (2009) Physics of tsunamis, vol 327. Springer, DordrechtGoogle Scholar
  17. Maeda T, Furumura T, Sakai S, Shinohara M (2011) Significant tsunami observed at ocean-bottom pressure gauges during the 2011 off the Pacific coast of Tohoku earthquake. Earth Planet Sp 63(7):53. CrossRefGoogle Scholar
  18. Maeda T, Obara K, Shinohara M, Kanazawa T, Uehira K (2015) Successive estimation of a tsunami wavefield without earthquake source data: a data assimilation approach toward real-time tsunami forecasting. Geophys Res Lett 42(19):7923–7932. CrossRefGoogle Scholar
  19. Matsumoto H, Inoue S, Ohmachi T (2012) Dynamic response of bottom water pressure due to the 2011 Tohoku earthquake. J Disaster Res 7(7):468–475. CrossRefGoogle Scholar
  20. Mikada H et al (2006) New discoveries in dynamics of an M8 earthquake-phenomena and their implications from the 2003 Tokachi-oki earthquake using a long term monitoring cabled observatory. Tectonophysics 426(1):95–105. CrossRefGoogle Scholar
  21. Mori N, Takahashi T, Yasuda T, Yanagisawa H (2011) Survey of 2011 Tohoku earthquake tsunami inundation and run-up. Geophys Res Lett 38:L00G14. CrossRefGoogle Scholar
  22. Mungov G, Eblé M, Bouchard R (2013) DART® tsunameter retrospective and real-time data: a reflection on 10 years of processing in support of tsunami research and operations. Pure Appl Geophys 170:1369–1384. CrossRefGoogle Scholar
  23. Nakano M, Nakamura T, Kaneda Y (2015) Hypocenters in the Nankai trough determined by using data from both ocean-bottom and land seismic networks and a 3D velocity structure model: implications for seismotectonic activity. Bull Seismol Soc Am 105(3):1594–1605. CrossRefGoogle Scholar
  24. Namegaya Y, Satake K (2014) Reexamination of the AD 869 Jogan earthquake size from tsunami deposit distribution, simulated flow depth, and velocity. Geophys Res Lett 41:2297–2303. CrossRefGoogle Scholar
  25. Nosov MA (1999) Tsunami generation in compressible ocean. Phys Chem Earth, Part B: Hydrol Oceans Atmos 24(5):437–441. CrossRefGoogle Scholar
  26. Nosov MA, Kolesov SV (2007) Elastic oscillations of water column in the 2003 Tokachi-oki tsunami source: in-situ measurements and 3-D numerical modeling. Nat Hazards Earth Syst Sci 7(2):243–249. CrossRefGoogle Scholar
  27. Ohta Y et al (2012) Quasi real-time fault model estimation for near-field tsunami forecasting based on RTK-GPS analysis: application to the 2011 Tohoku-Oki earthquake (Mw 9.0). J Geophys Res: Solid Earth 117:B02311. CrossRefGoogle Scholar
  28. Okal EA (1988) Seismic parameters controlling far-field tsunami amplitudes: a review. Nat Hazards 1:67. CrossRefGoogle Scholar
  29. Ozaki T (2011) Outline of the 2011 off the Pacific coast of Tohoku earthquake (Mw 9.0). Earth Planet Sp 63:57. CrossRefGoogle Scholar
  30. Rabinovich AB, Eblé MC (2015) Deep-ocean measurements of tsunami waves. Pure Appl Geophys 172:3281–3312. CrossRefGoogle Scholar
  31. Saito T, Inazu D, Tanaka S, Miyoshi T (2013) Tsunami coda across the Pacific Ocean following the 2011 Tohoku-Oki earthquake. Bull Seismol Soc Am 103(2B):1429–1443. CrossRefGoogle Scholar
  32. Satake K (2015) Tsunamis, treatise on geophysics, 2nd edn. Elsevier, Oxford, pp 477–504CrossRefGoogle Scholar
  33. Satake K, Fujii Y, Harada T, Namegaya Y (2013) Time and space distribution of coseismic slip of the 2011 Tohoku earthquake as inferred from tsunami waveform data. Bull Seismol Soc Am 103(2B):1473–1492. CrossRefGoogle Scholar
  34. Satake K, Fujii Y, Yamaki S (2017) Different depths of near-trench slips of the 1896 Sanriku and 2011 Tohoku earthquakes. Geosci Lett 4:33. CrossRefGoogle Scholar
  35. Suzuki W, Aoi S, Sekiguchi H, Kunugi T (2011) Rupture process of the 2011 Tohoku-Oki mega-thrust earthquake (M9. 0) inverted from strong-motion data. Geophys Res Lett 38:L00G16. CrossRefGoogle Scholar
  36. Tang L et al (2012) Direct energy estimation of the 2011 Japan tsunami using deep-ocean pressure measurements. J Geophys Res: Oceans 117:C08008. CrossRefGoogle Scholar
  37. Tanioka Y, Seno T (2001) Sediment effect on tsunami generation of the 1896 Sanriku tsunami earthquake. Geophys Res Lett 28(17):3389–3392. CrossRefGoogle Scholar
  38. Tanioka Y (2017) Tsunami simulation method assimilating ocean bottom pressure data near a tsunami source region. Pure Appl Geophys 175:721. CrossRefGoogle Scholar
  39. Tappin DR et al (2014) Did a submarine landslide contribute to the 2011 Tohoku tsunami? Mar Geol 357:344–361. CrossRefGoogle Scholar
  40. Tatehata H (1997) The new tsunami warning system of the Japan meteorological agency. In: Perspectives on tsunami hazard reduction. Springer, Dordrecht, pp 175–188CrossRefGoogle Scholar
  41. Titov VV et al (2005) Real-time tsunami forecasting: challenges and solutions. In: Developing tsunami-resilient communities. Springer, Dordrecht, pp 41–58CrossRefGoogle Scholar
  42. Tsushima H, Hino R, Tanioka Y, Imamura F, Fujimoto H (2012) Tsunami waveform inversion incorporating permanent seafloor deformation and its application to tsunami forecasting. J Geophys Res Solid Earth 117:B03311. CrossRefGoogle Scholar
  43. Tsushima H, Ohta Y (2014) Review on near-field tsunami forecasting from offshore tsunami data and onshore GNSS data for tsunami early warning. J. Disaster Res 9(3):339–357. CrossRefGoogle Scholar
  44. Watada S, Kusumoto S, Satake K (2014) Traveltime delay and initial phase reversal of distant tsunamis coupled with the self-gravitating elastic earth. J Geophys Res Solid Earth 119:4287–4310. CrossRefGoogle Scholar
  45. Yamamoto N, Aoi S, Hirata K, Suzuki W, Kunugi T, Nakamura H (2016) Multi-index method using offshore ocean-bottom pressure data for real-time tsunami forecast. Earth Planet Sp 68(1):128. CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Research Institute for Earth Science and Disaster ResilienceTsukubaJapan

Personalised recommendations