Skip to main content
Book cover

Muse Cells pp 219–241Cite as

Liver Regeneration Supported by Muse Cells

  • Chapter
  • First Online:
  • 1191 Accesses

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1103))

Abstract

Cellular compensation from extrahepatic resources is expected to improve the prognosis of liver diseases. Currently, liver dysfunction is treated by a variety of modalities including drugs, cytokines, vascular interventions, energy devices, surgery, and liver transplantation; however, in recent years there have been few significant advancements in treatment efficacy. A next-generation therapeutic strategy for liver disease, cellular compensatory therapy (i.e., cell therapy), is now being considered for clinical practice. Liver dysfunction is attributed to a lack of sufficient functional cells. However, processes involved in recovery of liver function are not fully elucidated, which has complicated the interpretation of treatment effects at the cellular level. Our genotyping study of living donor liver transplantation revealed that a variety of graft liver tissues contained the donor genotype, indicating that extrahepatic cells had differentiated into liver component cells during liver regeneration. Multilineage-differentiating stress-enduring (Muse) cells appear to be a strong candidate for extrahepatic resources that can contribute to liver regeneration. Muse cells are defined as stage-specific embryonic antigen 3-expressing cells that contribute to tissue regeneration and have the potential to differentiate into three germ layers. The significant advantage of Muse cells over other “pluripotent cells” is that Muse cells are present in bone marrow/blood as well as a variety of connective tissues, which provides safety and ethical advantages for clinical applications. Here, we review current therapeutic topics in liver diseases and discuss the potential for cell therapy using Muse cells based on our recent studies of Muse cell administration in a mouse model of physical partial hepatectomy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Itoh T, Miyajima A (2014) Liver regeneration by stem/progenitor cells. Hepatology 59(4):1617–1626

    CAS  PubMed  Google Scholar 

  2. Miyaoka Y, Ebato K, Kato H, Arakawa S, Shimizu S, Miyajima A (2012) Hypertrophy and unconventional cell division of hepatocytes underlie liver regeneration. Curr Biol 22(13):1166–1175

    CAS  PubMed  Google Scholar 

  3. Katagiri H, Kushida Y, Nojima M, Kuroda Y, Wakao S, Ishida K et al (2016) A distinct subpopulation of bone marrow mesenchymal stem cells, muse cells, directly commit to the replacement of liver components. Am J Transplant 16(2):468–483

    CAS  PubMed  Google Scholar 

  4. Liang TJ, Ghany MG (2013) Current and future therapies for hepatitis C virus infection. N Engl J Med 368(20):1907–1917

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Rinella ME (2015) Nonalcoholic fatty liver disease: a systematic review. JAMA 313(22):2263–2273

    CAS  PubMed  Google Scholar 

  6. Breitenstein S, Dimitroulis D, Petrowsky H, Puhan MA, Mullhaupt B, Clavien PA (2009) Systematic review and meta-analysis of interferon after curative treatment of hepatocellular carcinoma in patients with viral hepatitis. Br J Surg 96(9):975–981

    CAS  PubMed  Google Scholar 

  7. Mitry RR, Hughes RD, Dhawan A (2011) Hepatocyte transplantation. J Clin Exp Hepatol 1(2):109–114

    PubMed  PubMed Central  Google Scholar 

  8. Dhawan A, Puppi J, Hughes RD, Mitry RR (2010) Human hepatocyte transplantation: current experience and future challenges. Nat Rev Gastroenterol Hepatol 7(5):288–298

    PubMed  Google Scholar 

  9. Fox IJ, Chowdhury JR, Kaufman SS, Goertzen TC, Chowdhury NR, Warkentin PI et al (1998) Treatment of the Crigler-Najjar syndrome type I with hepatocyte transplantation. N Engl J Med 338(20):1422–1426

    CAS  PubMed  Google Scholar 

  10. Muraca M, Gerunda G, Neri D, Vilei MT, Granato A, Feltracco P et al (2002) Hepatocyte transplantation as a treatment for glycogen storage disease type 1a. Lancet 359(9303):317–318

    PubMed  Google Scholar 

  11. Forbes SJ, Gupta S, Dhawan A (2015) Cell therapy for liver disease: from liver transplantation to cell factory. J Hepatol 62(1 Suppl):S157–S169

    CAS  PubMed  Google Scholar 

  12. Pontikoglou C, Deschaseaux F, Sensebe L, Papadaki HA (2011) Bone marrow mesenchymal stem cells: biological properties and their role in hematopoiesis and hematopoietic stem cell transplantation. Stem Cell Rev 7(3):569–589

    PubMed  Google Scholar 

  13. Prockop DJ, Brenner M, Fibbe WE, Horwitz E, Le Blanc K, Phinney DG et al (2010) Defining the risks of mesenchymal stromal cell therapy. Cytotherapy 12(5):576–578

    PubMed  Google Scholar 

  14. Tautenhahn HM, Bruckner S, Baumann S, Winkler S, Otto W, von Bergen M et al (2016) Attenuation of postoperative acute liver failure by mesenchymal stem cell treatment due to metabolic implications. Ann Surg 263(3):546–556

    PubMed  Google Scholar 

  15. Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25(11):2739–2749

    CAS  PubMed  Google Scholar 

  16. Kuroda Y, Kitada M, Wakao S, Nishikawa K, Tanimura Y, Makinoshima H et al (2010) Unique multipotent cells in adult human mesenchymal cell populations. Proc Natl Acad Sci USA 107(19):8639–8643

    CAS  PubMed  Google Scholar 

  17. Chiu KW, Nakano T, Chen KD, Hsu LW, Lai CY, Chiu HC et al (2013) Homogeneous phenomenon of the graft when using different genotype characteristic of recipients/donors in living donor liver transplantation. World J Hepatol 5(11):642–648

    PubMed  PubMed Central  Google Scholar 

  18. Chiu KW, Nakano T, Chen KD, Lai CY, Hsu LW, Chiu HC et al (2013) Pyrosequencing to identify homogeneous phenomenon when using recipients/donors with different CYP3A5*3 genotypes in living donor liver transplantation. PLoS One 8(8):e71314

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hove WR, van Hoek B, Bajema IM, Ringers J, van Krieken JH, Lagaaij EL (2003) Extensive chimerism in liver transplants: vascular endothelium, bile duct epithelium, and hepatocytes. Liver Transpl 9(6):552–556

    PubMed  Google Scholar 

  20. Kleeberger W, Rothamel T, Glockner S, Flemming P, Lehmann U, Kreipe H (2002) High frequency of epithelial chimerism in liver transplants demonstrated by microdissection and STR-analysis. Hepatology 35(1):110–116

    PubMed  Google Scholar 

  21. Ng IO, Chan KL, Shek WH, Lee JM, Fong DY, Lo CM et al (2003) High frequency of chimerism in transplanted livers. Hepatology 38(4):989–998

    PubMed  Google Scholar 

  22. Makuuchi M (2013) Surgical treatment for HCC–special reference to anatomical resection. Int J Surg 11(Suppl 1):S47–S49

    PubMed  Google Scholar 

  23. Hasegawa Y, Nitta H, Sasaki A, Takahara T, Itabashi H, Katagiri H et al (2015) Long-term outcomes of laparoscopic versus open liver resection for liver metastases from colorectal cancer: a comparative analysis of 168 consecutive cases at a single center. Surgery 157(6):1065–1072

    PubMed  Google Scholar 

  24. Page AJ, Weiss MJ, Pawlik TM (2014) Surgical management of noncolorectal cancer liver metastases. Cancer 120(20):3111–3121

    PubMed  Google Scholar 

  25. Roll GR, Parekh JR, Parker WF, Siegler M, Pomfret EA, Ascher NL et al (2013) Left hepatectomy versus right hepatectomy for living donor liver transplantation: shifting the risk from the donor to the recipient. Liver Transpl 19(5):472–481

    PubMed  Google Scholar 

  26. Takahara T, Wakabayashi G, Hasegawa Y, Nitta H (2015) Minimally invasive donor hepatectomy: evolution from hybrid to pure laparoscopic techniques. Ann Surg 261(1):e3–e4

    PubMed  Google Scholar 

  27. Akamatsu N, Sugawara Y, Nagata R, Kaneko J, Aoki T, Sakamoto Y et al (2014) Adult right living-donor liver transplantation with special reference to reconstruction of the middle hepatic vein. Am J Transplant 14(12):2777–2787

    CAS  PubMed  Google Scholar 

  28. Duclos J, Bhangui P, Salloum C, Andreani P, Saliba F, Ichai P et al (2016) Ad Integrum functional and volumetric recovery in right lobe living donors: is it really complete 1 year after donor hepatectomy? Am J Transplant 16(1):143–156

    CAS  PubMed  Google Scholar 

  29. Kogure K, Ishizaki M, Nemoto M, Kuwano H, Makuuchi M (1999) A comparative study of the anatomy of rat and human livers. J Hepato-Biliary-Pancreat Surg 6(2):171–175

    CAS  Google Scholar 

  30. Malarkey DE, Johnson K, Ryan L, Boorman G, Maronpot RR (2005) New insights into functional aspects of liver morphology. Toxicol Pathol 33(1):27–34

    CAS  PubMed  Google Scholar 

  31. Hori T, Ohashi N, Chen F, Baine AM, Gardner LB, Jermanus S et al (2011) Simple and sure methodology for massive hepatectomy in the mouse. Ann Gastroenterol 24(4):307–318

    PubMed  PubMed Central  Google Scholar 

  32. Mitchell C, Willenbring H (2008) A reproducible and well-tolerated method for 2/3 partial hepatectomy in mice. Nat Protoc 3(7):1167–1170

    CAS  PubMed  Google Scholar 

  33. Song GW, Lee SG (2014) Living donor liver transplantation. Curr Opin Organ Transplant 19(3):217–222

    CAS  PubMed  Google Scholar 

  34. Brown RS Jr (2008) Pros and cons of living donor liver transplant. Gastroenterol Hepatol (N Y) 4(9):622–624

    Google Scholar 

  35. Katagiri HNS, Nitta H, Wakabayashi G (2014) Potential involvement of extrahepatic cells in liver regeneration. J Iwate Med Assoc 66(2):67–74

    Google Scholar 

  36. Haga J, Shimazu M, Wakabayashi G, Tanabe M, Kawachi S, Fuchimoto Y et al (2008) Liver regeneration in donors and adult recipients after living donor liver transplantation. Liver Transpl 14(12):1718–1724

    PubMed  Google Scholar 

  37. Ibrahim S, Chen CL, Wang CC, Wang SH, Lin CC, Liu YW et al (2005) Liver regeneration and splenic enlargement in donors after living-donor liver transplantation. World J Surg 29(12):1658–1666

    PubMed  Google Scholar 

  38. Kato Y, Shimazu M, Wakabayashi G, Tanabe M, Morikawa Y, Hoshino K et al (2001) Significance of portal venous flow in graft regeneration after living related liver transplantation. Transplant Proc 33(1–2):1484–1485

    CAS  PubMed  Google Scholar 

  39. Kido M, Ku Y, Fukumoto T, Tominaga M, Iwasaki T, Ogata S et al (2003) Significant role of middle hepatic vein in remnant liver regeneration of right-lobe living donors. Transplantation 75(9):1598–1600

    PubMed  Google Scholar 

  40. Michalopoulos GK, DeFrances MC (1997) Liver regeneration. Science 276(5309):60–66

    CAS  PubMed  Google Scholar 

  41. Tanimizu N, Mitaka T (2014) Re-evaluation of liver stem/progenitor cells. Organogenesis 10(2):208–215

    PubMed  PubMed Central  Google Scholar 

  42. Isse K, Lesniak A, Grama K, Maier J, Specht S, Castillo-Rama M et al (2013) Preexisting epithelial diversity in normal human livers: a tissue-tethered cytometric analysis in portal/periportal epithelial cells. Hepatology 57(4):1632–1643

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Schmelzle M, Duhme C, Junger W, Salhanick SD, Chen Y, Wu Y et al (2013) CD39 modulates hematopoietic stem cell recruitment and promotes liver regeneration in mice and humans after partial hepatectomy. Ann Surg 257(4):693–701

    PubMed  PubMed Central  Google Scholar 

  44. Suzuki Y, Katagiri H, Wang T, Kakisaka K, Kume K, Nishizuka SS et al (2016) Ductular reactions in the liver regeneration process with local inflammation after physical partial hepatectomy. Lab Investig J Tech Methods Pathol 96(11):1211–1222

    CAS  Google Scholar 

  45. Huebert RC, Rakela J (2014) Cellular therapy for liver disease. Mayo Clin Proc 89(3):414–424

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Mitry RR, Hughes RD, Aw MM, Terry C, Mieli-Vergani G, Girlanda R et al (2003) Human hepatocyte isolation and relationship of cell viability to early graft function. Cell Transplant 12(1):69–74

    PubMed  Google Scholar 

  47. Strom SC, Davila J, Grompe M (2010) Chimeric mice with humanized liver: tools for the study of drug metabolism, excretion, and toxicity. Methods Mol Biol 640:491–509

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Dezawa M (2006) Insights into autotransplantation: the unexpected discovery of specific induction systems in bone marrow stromal cells. Cell Mol Life Sci 63(23):2764–2772

    CAS  PubMed  Google Scholar 

  49. Ferraro F, Lymperi S, Mendez-Ferrer S, Saez B, Spencer JA, Yeap BY et al (2011) Diabetes impairs hematopoietic stem cell mobilization by altering niche function. Sci Transl Med 3(104):104ra1

    Google Scholar 

  50. Lin BL, Chen JF, Qiu WH, Wang KW, Xie DY, Chen XY et al (2017) Allogeneic bone marrow-derived mesenchymal stromal cells for hepatitis B virus-related acute-on-chronic liver failure: a randomized controlled trial. Hepatology 66(1):209–219

    CAS  PubMed  Google Scholar 

  51. Suk KT, Yoon JH, Kim MY, Kim CW, Kim JK, Park H et al (2016) Transplantation with autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: phase 2 trial. Hepatology 64(6):2185–2197

    CAS  PubMed  Google Scholar 

  52. Wakao S, Akashi H, Kushida Y, Dezawa M (2014) Muse cells, newly found non-tumorigenic pluripotent stem cells, reside in human mesenchymal tissues. Pathol Int 64(1):1–9

    CAS  PubMed  Google Scholar 

  53. Dezawa M (2016) Muse cells provide the pluripotency of mesenchymal stem cells: direct contribution of muse cells to tissue regeneration. Cell Transplant 25(5):849–861

    PubMed  Google Scholar 

  54. Hori E, Hayakawa Y, Hayashi T, Hori S, Okamoto S, Shibata T et al (2016) Mobilization of pluripotent multilineage-differentiating stress-enduring cells in ischemic stroke. J Stroke Cerebrovasc Dis 25(6):1473–1481

    PubMed  Google Scholar 

  55. Tanaka T, Nishigaki K, Minatoguchi S, Nawa T, Yamada Y, Kanamori H et al (2018) Mobilized muse cells after acute myocardial infarction predict cardiac function and remodeling in the chronic phase. Circ J 82(2):561–571

    PubMed  Google Scholar 

  56. Wakao S, Kitada M, Dezawa M (2013) The elite and stochastic model for iPS cell generation: multilineage-differentiating stress enduring (Muse) cells are readily reprogrammable into iPS cells. Cytometry A 83(1):18–26

    PubMed  Google Scholar 

  57. Wakao S, Kitada M, Kuroda Y, Shigemoto T, Matsuse D, Akashi H et al (2011) Multilineage-differentiating stress-enduring (Muse) cells are a primary source of induced pluripotent stem cells in human fibroblasts. Proc Natl Acad Sci USA 108(24):9875–9880

    CAS  PubMed  Google Scholar 

  58. Dahlke MH, Popp FC, Larsen S, Schlitt HJ, Rasko JE (2004) Stem cell therapy of the liver—fusion or fiction? Liver Transpl 10(4):471–479

    PubMed  Google Scholar 

  59. Grompe M, al-Dhalimy M, Finegold M, Ou CN, Burlingame T, Kennaway NG et al (1993) Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice. Genes Dev 7(12A):2298–2307

    CAS  PubMed  Google Scholar 

  60. Grompe M, Lindstedt S, al-Dhalimy M, Kennaway NG, Papaconstantinou J, Torres-Ramos CA et al (1995) Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type I. Nat Genet 10(4):453–460

    CAS  PubMed  Google Scholar 

  61. Grompe M, Strom S (2013) Mice with human livers. Gastroenterology 145(6):1209–1214

    PubMed  Google Scholar 

  62. He Z, Zhang H, Zhang X, Xie D, Chen Y, Wangensteen KJ et al (2010) Liver xeno-repopulation with human hepatocytes in Fah-/-Rag2-/- mice after pharmacological immunosuppression. Am J Pathol 177(3):1311–1319

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Huch M, Dorrell C, Boj SF, van Es JH, Li VS, van de Wetering M et al (2013) In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494(7436):247–250

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Li L, Zeng Z, Qi Z, Wang X, Gao X, Wei H et al (2015) Natural killer cells-produced IFN-gamma improves bone marrow-derived hepatocytes regeneration in murine liver failure model. Sci Rep 5:13687

    PubMed  PubMed Central  Google Scholar 

  65. Qi Z, Wang X, Wei H, Sun R, Tian Z (2015) Infiltrating neutrophils aggravate metabolic liver failure in fah-deficient mice. Liver Int 35(3):774–785

    CAS  PubMed  Google Scholar 

  66. Azuma H, Paulk N, Ranade A, Dorrell C, Al-Dhalimy M, Ellis E et al (2007) Robust expansion of human hepatocytes in Fah-/-/Rag2-/-/Il2rg-/- mice. Nat Biotechnol 25(8):903–910

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Grompe M, Overturf K, al-Dhalimy M, Finegold M (1998) Therapeutic trials in the murine model of hereditary tyrosinaemia type I: a progress report. J Inherit Metab Dis 21(5):518–531

    CAS  PubMed  Google Scholar 

  68. Wang X, Willenbring H, Akkari Y, Torimaru Y, Foster M, Al-Dhalimy M et al (2003) Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422(6934):897–901

    CAS  PubMed  Google Scholar 

  69. Vassilopoulos G, Wang PR, Russell DW (2003) Transplanted bone marrow regenerates liver by cell fusion. Nature 422(6934):901–904

    CAS  PubMed  Google Scholar 

  70. Wang X, Montini E, Al-Dhalimy M, Lagasse E, Finegold M, Grompe M (2002) Kinetics of liver repopulation after bone marrow transplantation. Am J Pathol 161(2):565–574

    PubMed  PubMed Central  Google Scholar 

  71. Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y et al (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416(6880):542–545

    CAS  PubMed  Google Scholar 

  72. Harris RG, Herzog EL, Bruscia EM, Grove JE, Van Arnam JS, Krause DS (2004) Lack of a fusion requirement for development of bone marrow-derived epithelia. Science 305(5680):90–93

    CAS  PubMed  Google Scholar 

  73. Jang YY, Collector MI, Baylin SB, Diehl AM, Sharkis SJ (2004) Hematopoietic stem cells convert into liver cells within days without fusion. Nat Cell Biol 6(6):532–539

    CAS  PubMed  Google Scholar 

  74. Duncan AW, Dorrell C, Grompe M (2009) Stem cells and liver regeneration. Gastroenterology 137(2):466–481

    PubMed  PubMed Central  Google Scholar 

  75. Duncan AW, Hickey RD, Paulk NK, Culberson AJ, Olson SB, Finegold MJ et al (2009) Ploidy reductions in murine fusion-derived hepatocytes. PLoS Genet 5(2):e1000385

    PubMed  PubMed Central  Google Scholar 

  76. Duncan AW, Taylor MH, Hickey RD, Hanlon Newell AE, Lenzi ML, Olson SB et al (2010) The ploidy conveyor of mature hepatocytes as a source of genetic variation. Nature 467(7316):707–710

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Malato Y, Naqvi S, Schurmann N, Ng R, Wang B, Zape J et al (2011) Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration. J Clin Invest 121(12):4850–4860

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang B, Zhao L, Fish M, Logan CY, Nusse R (2015) Self-renewing diploid Axin2(+) cells fuel homeostatic renewal of the liver. Nature 524(7564):180–185

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Yanger K, Knigin D, Zong Y, Maggs L, Gu G, Akiyama H et al (2014) Adult hepatocytes are generated by self-duplication rather than stem cell differentiation. Cell Stem Cell 15(3):340–349

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Demetris AJ, Seaberg EC, Wennerberg A, Ionellie J, Michalopoulos G (1996) Ductular reaction after submassive necrosis in humans. Special emphasis on analysis of ductular hepatocytes. Am J Pathol 149(2):439–448

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Libbrecht L, Desmet V, Van Damme B, Roskams T (2000) Deep intralobular extension of human hepatic ‘progenitor cells’ correlates with parenchymal inflammation in chronic viral hepatitis: can ‘progenitor cells’ migrate? J Pathol 192(3):373–378

    CAS  PubMed  Google Scholar 

  82. Sancho-Bru P, Altamirano J, Rodrigo-Torres D, Coll M, Millan C, Jose Lozano J et al (2012) Liver progenitor cell markers correlate with liver damage and predict short-term mortality in patients with alcoholic hepatitis. Hepatology 55(6):1931–1941

    CAS  PubMed  Google Scholar 

  83. Roskams TA, Theise ND, Balabaud C, Bhagat G, Bhathal PS, Bioulac-Sage P et al (2004) Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in human livers. Hepatology 39(6):1739–1745

    PubMed  Google Scholar 

  84. Turanyi E, Dezso K, Csomor J, Schaff Z, Paku S, Nagy P (2010) Immunohistochemical classification of ductular reactions in human liver. Histopathology 57(4):607–614

    PubMed  Google Scholar 

  85. Miyajima A, Tanaka M, Itoh T (2014) Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell 14(5):561–574

    CAS  PubMed  Google Scholar 

  86. Farber E (1956) Similarities in the sequence of early histological changes induced in the liver of the rat by ethionine, 2-acetylamino-fluorene, and 3’-methyl-4-dimethylaminoazobenzene. Cancer Res 16(2):142–148

    CAS  PubMed  Google Scholar 

  87. Evarts RP, Nagy P, Marsden E, Thorgeirsson SS (1987) A precursor-product relationship exists between oval cells and hepatocytes in rat liver. Carcinogenesis 8(11):1737–1740

    CAS  PubMed  Google Scholar 

  88. Preisegger KH, Factor VM, Fuchsbichler A, Stumptner C, Denk H, Thorgeirsson SS (1999) Atypical ductular proliferation and its inhibition by transforming growth factor beta1 in the 3,5-diethoxycarbonyl-1,4-dihydrocollidine mouse model for chronic alcoholic liver disease. Lab Investig J Tech Methods Pathol 79(2):103–109

    CAS  Google Scholar 

  89. Akhurst B, Croager EJ, Farley-Roche CA, Ong JK, Dumble ML, Knight B et al (2001) A modified choline-deficient, ethionine-supplemented diet protocol effectively induces oval cells in mouse liver. Hepatology 34(3):519–522

    CAS  PubMed  Google Scholar 

  90. Theise ND, Saxena R, Portmann BC, Thung SN, Yee H, Chiriboga L et al (1999) The canals of Hering and hepatic stem cells in humans. Hepatology 30(6):1425–1433

    CAS  PubMed  Google Scholar 

  91. Roskams TA, Libbrecht L, Desmet VJ (2003) Progenitor cells in diseased human liver. Semin Liver Dis 23(4):385–396

    CAS  PubMed  Google Scholar 

  92. Kaneko K, Kamimoto K, Miyajima A, Itoh T (2015) Adaptive remodeling of the biliary architecture underlies liver homeostasis. Hepatology 61(6):2056–2066

    CAS  PubMed  Google Scholar 

  93. Takase HM, Itoh T, Ino S, Wang T, Koji T, Akira S et al (2013) FGF7 is a functional niche signal required for stimulation of adult liver progenitor cells that support liver regeneration. Genes Dev 27(2):169–181

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Espanol-Suner R, Carpentier R, Van Hul N, Legry V, Achouri Y, Cordi S et al (2012) Liver progenitor cells yield functional hepatocytes in response to chronic liver injury in mice. Gastroenterology 143(6):1564–75.e7

    PubMed  Google Scholar 

  95. Katsuda T, Kawamata M, Hagiwara K, Takahashi RU, Yamamoto Y, Camargo FD et al (2017) Conversion of terminally committed hepatocytes to culturable bipotent progenitor cells with regenerative capacity. Cell Stem Cell 20(1):41–55

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was partially supported by a Grant-in-Aid for Scientific Research 16 K09370 (Y.T.) and 17 K10676 (H.K.); and Keiryokai Research Foundation No. 132 (Y.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi S. Nishizuka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Japan KK, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nishizuka, S.S., Suzuki, Y., Katagiri, H., Takikawa, Y. (2018). Liver Regeneration Supported by Muse Cells. In: Dezawa, M. (eds) Muse Cells. Advances in Experimental Medicine and Biology, vol 1103. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56847-6_12

Download citation

Publish with us

Policies and ethics