Skip to main content

Fate of Pharmaceuticals in Composting Process

  • Chapter
  • First Online:
Resource-Oriented Agro-sanitation Systems

Abstract

Composting toilet receives not only human excrement but also pharmaceuticals excreted in urine and/or feces. Since these compounds are physiologically active and its biodegradability seemed to be low, the fate and the effect of pharmaceuticals in composting process should be investigated. In our study, we focused on (1) the fate and the effect of antibiotics on the composting process of human excrement, (2) the factors affecting the degradation of antibiotics in composting reactor, and (3) the fate of pharmaceuticals other than antibiotics in composting process. Our results indicated that the amount of antibiotics expected from usually prescribed dose weaken the bacterial activity in composting reactor. Especially, effect of amoxicillin was strong. The composting reactor can treat antibiotics (amoxicillin, tetracycline, azithromycin). Though their degradation rates differed from antibiotics to antibiotics, the main factors affecting the degradation of antibiotics were found to be ammonia, phosphate, and hydroxyl ion. Since these concentrations in compositing toilet matrix were high in comparison with the other environmental media such as wastewater, this difference led the unique degradation mechanism in compositing toilet. As for pharmaceuticals other than antibiotics, laboratory-scale batch experiment showed that feces did not retard the degradation of pharmaceuticals, and among the pharmaceuticals examined, basic pharmaceuticals were treated faster than the acidic pharmaceuticals. But in the practically operated composting toilet, not only basic pharmaceuticals but also acidic and neutral ones were treated well. Detailed evaluation of the degradation mechanism and the degradation products would be necessary for future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abshagen U, Bablok W, Koch K, Lang PD, Schmidt HA, Senn M, Stork H (1979) Disposition pharmacokinetics of bezafibrate in man. Eur J Clin Pharmacol 16:31–38. https://doi.org/10.1007/BF00644963

    Article  CAS  Google Scholar 

  • Andersen JV (1992) Simultaneous quantitative determination of naproxen, its metabolite 6-O-desmethylnaproxen and their five conjugates in plasma and urine samples by high-performance liquid chromatography on dynamically modified silica. J Chromatogr 577:325–333

    Article  CAS  Google Scholar 

  • Andreasen F, Elsborg L, Husted S, Thomsen O (1978) Pharmacokinetics of sulfadiazine and trimethoprim in man. Europ J Pharmacol 14:57–67. https://doi.org/10.1007/BF00560259

    Article  CAS  Google Scholar 

  • Beresford AP, McGibney D, Humphrey MJ, Macrae PV, Stopher DA (1988) Metabolism and kinetics of amlodipine in man. Xenobiotica 18(2):245–254. https://doi.org/10.3109/00498258809041660

    Article  CAS  Google Scholar 

  • Brocks SR, Jamali F (1999) The pharmacokinetics of ibuprofen in animals and humans. In: Ibuprofen: a critical bibliographic review. Taylor and Francis, UK, pp 87–142

    Google Scholar 

  • Committee on analytical methods of residual veterinary drugs (2000) Analytical method of veterinary drugs in livestock and marine products: part 7. Food Sanitation Res 50(10):7–18

    Google Scholar 

  • Fiese EF, Steffen SH (1990) Comparison of the acid stability of azithromycin and erythromycin A. J Antimicrob Chemother 25(Suppl. A):39–47

    Article  CAS  Google Scholar 

  • Gilman AG, Hardman JG, Limbrid LE (2001) Goodman & Gillman’s the pharmacological basis of therapeutics, 10th edn. McGraw-Hill, New York

    Google Scholar 

  • Hara S, Mita T (1969) Absorption and excretion of solcillin. J New Remedies Clin 18(11):1602–1641

    Google Scholar 

  • Haginaka J, Wakai J (1987) Liquid chromatographic determination of ampicillin and its metabolites in human urine by postcolumn alkaline degradation. J Pharm Pharmacol 39:5–8

    Article  CAS  Google Scholar 

  • Hirsch R, Ternes T, Haberer K, Kratz K (1999) Occurrence of antibiotics in the aquatic environment. Sci Total Environ 225:109–118. https://doi.org/10.1016/S0048-9697(98)00337-4

    Article  CAS  Google Scholar 

  • Imabori K, Yamakawa T (1984) Dictionary of biochemistry. Tokyo Kagaku Dozin, Tokyo

    Google Scholar 

  • Imai Y (2003) Verification analysis of microflora in biotoilet. Bachelor course thesis of Hokkaido University, Japan

    Google Scholar 

  • Kakimoto T, Funamizu N (2006) Effect of phosphate, ammonia and pH on the degradation of antibiotics in the composting toilet. Environ Eng Res 43:429–437

    Google Scholar 

  • Kakimoto T, Funamizu N (2007) Factors affecting the degradation of amoxicillin in composting toilet. Chemosphere 66(11):2219–2224. https://doi.org/10.1016/j.chemosphere.2006.09.060

    Article  CAS  Google Scholar 

  • Kakimoto T, Osawa T, Funamizu N (2007) Antibiotic effect of amoxicillin on the feces composting process and reactivation of bacteria by intermittent feeding of feces. Biores Technol 98(18):3555–3560. https://doi.org/10.1016/j.biortech.2006.11.029

    Article  CAS  Google Scholar 

  • Kato and Kamataki (2000) Drug-metabolism—as a medical pharmacy and toxicology, 2nd edn. Tokyo Kagaku Dojin, Tokyo

    Google Scholar 

  • Kawabata T, Sakaguchi G, Nakamura Y, Akano T (1960) Factors affecting the decomposition of oxytetracycline and chlortetracycline. J Antibiot Ser A 13(3):180–185

    Google Scholar 

  • Lopez Zavala MA, Funamizu N, Takakuwa T (2004) Modeling of aerobic biodegradation of feces using sawdust as a matrix. Water Res 38:1327–1339. https://doi.org/10.1016/j.watres.2003.10.028

    Article  CAS  Google Scholar 

  • Lopez Zavala MA, Funamizu N (2005) Effect of moisture content on the composting process in a biotoilet system. Compost Sci Util 13:208–216

    Article  Google Scholar 

  • Malloy MJ, Kane JP (2001) Agents used in hyperlipidemia. In: Katzung BG, Norwalk C (eds) Basic and clinical pharmacology. Mc-Graw-Hill Publisher, New York

    Google Scholar 

  • Martin PD (2004) Metabolism, excertion, and pharmacokinetics of rosuvastatin in health adult male volunteers. Jpn Pharmacol Ther 32:S18–S19

    Google Scholar 

  • Migdalof BH, Antonaccio MJ, McKinstry DN, Singhvi SM, Lan SJ, Egli P, Kripalani KJ (1984) Captopril: pharmacology, metabolism, and disposition. Drug Metab Rew 15(4):841–869. https://doi.org/10.3109/03602538409041080

    Article  CAS  Google Scholar 

  • Moffat AC, Osselton MD, Widdop B (2004) Clarke’s analysis of drugs and poisons. Pharmaceutical Press, London

    Google Scholar 

  • Nakajima M, Kanamaru M, Uno K, Yoshimoto T (1991) Phase I study of CGS 14824A (Benazepril HCl) A new angiotensin converting enzyme inhibitor. (1st report). Single oral administration in healthy volunteers. J Clin Ther Med 7(5):949–974

    Google Scholar 

  • Nakajima M, Uematsu T, Kanamaru M, Takayama F, Kamei K (1995) Phase I study of MK-954, a new angiotensin II receptor antagonist. Results of single oral administration. Jpn J Clin Pharmacol Ther 26(3):671–684. doi:https://doi.org/10.3999/jscpt.26.671

    Article  CAS  Google Scholar 

  • Otomo M, Ito M, Iida M, Yasuda M, Sonoyama T, Matsuda S (1985) Phase I clinical studies of S6472 (sustained release preparations of cefaclor). J Antibiot 38(3):822–832. https://doi.org/10.11553/antibiotics1968b.38.822

    Article  Google Scholar 

  • Ogami K, Kouke A, Komori K, Suzuki Y, Yasojima M (2005) Hitoyou iyakuhin butsuri kagaku teki jyouhousyu (Physical and chemical information collection of medical products for human use). Gihodo, Tokyo

    Google Scholar 

  • Otawa M, Uchiyama N, Saito Y, Suzuki A, Tanno C, Nakayama N, Goto Y (1989) Phase I studies on MK-733, an inhibitor of HMG-CoA reductase. I: Single dose and multiple dose studies in healthy volunteers. J Clin Ther Med 5(6):1123–1140

    Google Scholar 

  • Paton JH, Reeves DS (1988) Fluoroquinolone antibiotics microbiology, pharmacokinetics and clinical use. Drugs 36:193–228. https://doi.org/10.2165/00003495-198836020-00004

    Article  CAS  Google Scholar 

  • Reeves PR, McAinsh J, McIntosh DA, Winrow MJ (1988) Metabolism of atenolol in man. Xenobiotica 8(5):313–320. https://doi.org/10.3109/00498257809060956

    Article  Google Scholar 

  • Rieder J (1973) Metabolism and techniques for assay of trimethoprim and sulfamethoxazole. J Infect Dis 128:S567–S573

    Article  CAS  Google Scholar 

  • Ross DL, Riley CM (1992) Physicochemical properties of the fluoroquinolone antimicrobials. III. Complexation of lomefloxacin with various metal ions and the effect of metal ion complexation on aqueous solubility. Int J Pharm 87:203–213. https://doi.org/10.1016/0378-5173(92)90244-V

    Article  CAS  Google Scholar 

  • Takeuchi Y (1990) Drugs for abnormal pulse. The pharmacokinetics of antiarrhythmic drugs. J Pract Pharm 41(7):987–992

    Google Scholar 

  • Tanaka N, Nakamura S (1995) Broad outline of antibiotics, 4th edn. Tokyo University Press, Tokyo

    Google Scholar 

  • Todd PA, Benfield P (1990) Pharmacokinetic properties and therapeutic use, amoxicillin/clavulanic acid an update of its antibacterial activity. Drugs 39(2):264–307

    Article  CAS  Google Scholar 

  • Vickers S, Duncan CA, Vyas KP, Kari PH, Arison B, Prakash SR, Ramjit HG, Pitzenberger SM, Stokker G, Duggan DE (1990) In vitro and in vivo biotransformation of simvastatin, an inhibitor of HMG CoA reductase. Drug Metab Dispos 18(4):476–483

    CAS  Google Scholar 

  • Vree TB, Kolmer EW, Martea M, Bosch R, Shimoda M (1990) High-performance liquid chromatography of sulphadimethoxine and its N1-glucuronide, N4-acetyl and N4-acetyl-N1-glucuronide metabolites in human plasma and urine. J Chromatogr 526:119–128

    Article  CAS  Google Scholar 

  • Weil A, Caldwell J, Strolin-Benedetti M (1990) The metabolism and disposition of 14C-fenofibrate in human volunteers. Drug Metab Dispos 18(1):115–120

    CAS  Google Scholar 

  • Welling PG, Craig WA, Amidon GL, Kunin CM (1973) Pharmacokinetics of trimethoprim and sulfamethoxazole in normal subjects and in patients with renal failure. J Infect Dis 28:S556–S566

    Article  Google Scholar 

  • Wetzstein HG, Schmeer N, Karl W (1997) Degradation of the fluoroquinolone enrofloxacin by the brown rot fungus Gloeophyllum striatum: identification of metabolites. Appl Environ Microbiol 63:4272–4281

    CAS  Google Scholar 

  • Wong FA (1990) The metabolism of ofloxacion in humans. Drug Metab Dispos 18(6):1103–1104

    CAS  Google Scholar 

  • Zimetbaum P, Frishman WH, Kahn S (1991) Effects of gemfibrozil and other fibric acid derivatives on blood lipid and lipoproteins. J Clin Pharmacol 31:25–37. https://doi.org/10.1002/j.1552-4604.1991.tb01883.x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kakimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Japan KK, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kakimoto, T., Onoda, Y. (2019). Fate of Pharmaceuticals in Composting Process. In: Funamizu, N. (eds) Resource-Oriented Agro-sanitation Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56835-3_6

Download citation

Publish with us

Policies and ethics