Skip to main content

Three-Dimensional Structural Analyses in Cryogenic X-Ray Diffraction Imaging

  • Chapter
  • First Online:
X-Ray Diffraction Imaging of Biological Cells

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 210))

  • 725 Accesses

Abstract

An electron density map projected along the direction of the incident X-ray is obtained from a single small-angle diffraction pattern. However, most projection maps are difficult to interpret. The final goal of a structural analysis is a visualization of the electron density distribution in three dimensions. In this chapter, the tomography X-ray diffraction imaging (XDI) method isĀ first introduced to visualize three-dimensional (3D) electron density maps of particles in XDI using synchrotron radiation . In XDI experiments using X-ray free electron laser (XFEL) pulses , as the specimen particles are destroyed by single X-ray pulses, tomography experiments are impossible. Under the assumption that the structures of the particles are similarĀ at a low resolution, 3D reconstruction is possible by utilizing the single particle analysis method developed in transmission electron microscopy (TEM) . A scheme for 3D reconstruction in XFEL -XDI through simulations for macromolecules and experiments on a cellular organelle is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ā J. Miao, F. Fƶrster, O. Levi, Phys. Rev. B 72, 052103 (2005) Ā 

    Google ScholarĀ 

  2. J. Miao et al., Phys. Rev. Lett. 97, 215503 (2006)

    Google ScholarĀ 

  3. Y. Nishino et al., Phys. Rev. Lett. 102, 018101 (2009)

    Google ScholarĀ 

  4. H. Jiang et al., Proc. Natl. Acad. Sci. U.S.A. 107, 11234 (2010)

    Google ScholarĀ 

  5. C. Song et al., Biophys. J. 107, 1074 (2014)

    Google ScholarĀ 

  6. J.A. Rodriguez et al., IUCrJ 2, 575 (2015)

    Google ScholarĀ 

  7. T. Ekeberg et al., Phys. Rev. Lett. 114, 098102 (2015)

    Google ScholarĀ 

  8. J. Frank, Three-Dimensional Electron Microscopy of Macromolecular Assemblies (Oxford University Press, Oxford, 2006)

    Google ScholarĀ 

  9. D. DeRosier, A. Klug, Nature 217, 130 (1968)

    Google ScholarĀ 

  10. D. DeRosier, P.B. Moore, J. Mol. Biol. 52, 355 (1970)

    ArticleĀ  Google ScholarĀ 

  11. W. Hoppe et al., Z. Naturforsch. A31, 645 (1986)

    Google ScholarĀ 

  12. R.A. Crowther, D.J. DeRosier, A. Klug, Proc. R. Soc. Lond. 317, 319 (1970)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  13. M. Radermacher, J. Electron Microsc. Tech. 9, 359 (1988)

    ArticleĀ  Google ScholarĀ 

  14. M. Radermacher, in Electron Tomography, ed. by J. Frank (Plenum Press, New York, 1992), pp. 91ā€“115

    Google ScholarĀ 

  15. S. Lanzavecchia, and P.L. Bellon, J. Vis. Commun. Image Repres. 5, 255 (1994)

    Google ScholarĀ 

  16. M. van Heel, Ultramicroscopy 21, 111 (1987)

    Google ScholarĀ 

  17. P. Penczek, R.A. Grassucci, J. Frank, Ultramicroscopy 40, 33 (1994)

    Google ScholarĀ 

  18. J. Frank et al., J. Struct. Biol. 116, 190 (1996)

    Google ScholarĀ 

  19. S.J. Ludtke, P.R. Baldwin, W. Chiu, J. Struct. Biol. 128, 82 (1999)

    Google ScholarĀ 

  20. H. Elmlund, D. Elmlund, S. Bengio, Structure 21, 1299 (2013)

    Google ScholarĀ 

  21. S.H.W. Scheres, J. Struct. Biol. 180, 519 (2012)

    Google ScholarĀ 

  22. S.H.W. Scheres, J. Mol. Biol. 415, 406 (2012)

    Google ScholarĀ 

  23. M. van Heel, M. Schatz, J. Struct. Biol. 151, 250 (2005)

    Google ScholarĀ 

  24. P.B. Rosenthal, R. Henderson, J. Mol. Biol. 333, 721 (2003)

    Google ScholarĀ 

  25. S.H.W. Scheres, S. Chen, Nat. Methods 9, 853 (2012)

    Google ScholarĀ 

  26. W. Kodama, and M. Nakasako, Phys. Rev. E 84, 021902 (2011)

    Google ScholarĀ 

  27. K. Tamasaku et al., Nucl. Instrum. Meth. A 467ā€“468, 686 (2001)

    Google ScholarĀ 

  28. M. Matsuzaki et al., Nature 428, 653 (2004)

    Google ScholarĀ 

  29. M. Nakasako et al., Rev. Sci. Instrum. 84, 093705 (2013)

    Google ScholarĀ 

  30. A. Casanas et al., Acta Crystallogra. D72, 1036 (2016)

    Google ScholarĀ 

  31. M. R. Howells et al., J. Electron Spectrosc. Relat. Phenom. 170, 4 (2009).

    Google ScholarĀ 

  32. J. Miao, K. O. Hodgson, and D. Sayre, Proc. Natl. Acad. Sci. USA 98, 6641 (2001)

    Google ScholarĀ 

  33. N.D. Loh, V. Elser, Phys. Rev. E 80, 026705 (2009)

    Google ScholarĀ 

  34. N.D. Loh et al., Phys. Rev. Lett. 104, 225501 (2010)

    Google ScholarĀ 

  35. R. Xu et al., Nat. Commun. 5, 4061 (2014)

    Google ScholarĀ 

  36. K.S. Raines et al., Nature 463, 214 (2010)

    Google ScholarĀ 

  37. H. Wei, S. Liu, Phys. Rev. B 86, 226101 (2012)

    Google ScholarĀ 

  38. T. Oroguchi, M. Nakasako, Phys. Rev. E 87, 022712 (2013)

    Google ScholarĀ 

  39. G. Tian et al., Cell 124, 61 (2006)

    Google ScholarĀ 

  40. T.M. Schmeing et al., Mol. Cell 20, 437 (2005)

    Google ScholarĀ 

  41. A. Kobayashi et al., Rev. Sci. Instrum. 87, 053109 (2016)

    Google ScholarĀ 

  42. Q. Bian, A.S. Belmont, Curr. Opin. Cell Biol. 24, 359 (2012)

    Google ScholarĀ 

  43. Z. Duan et al., Nature 465, 363 (2010)

    Google ScholarĀ 

  44. M.W. Gray, J.M. Archibald, in Genomics of Chloroplasts and Mitochondria, ed. by R. Bock, V. Knoop (Springer, Dordrecht, 2012), pp. 1ā€“30

    Google ScholarĀ 

  45. S.W. Chisholm et al., Arch. Microbiol. 157, 297 (1992)

    ArticleĀ  Google ScholarĀ 

  46. A.M.L. van de Meene, M.F. Hohmann-Marriott, W.F.J. Vermaas, R.W. Roberson, Arch. Microbiol. 184, 259 (2006)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Nakasako .

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2018 Springer Japan KK, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nakasako, M. (2018). Three-Dimensional Structural Analyses in Cryogenic X-Ray Diffraction Imaging. In: X-Ray Diffraction Imaging of Biological Cells. Springer Series in Optical Sciences, vol 210. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56618-2_9

Download citation

Publish with us

Policies and ethics