Skip to main content

Diffraction Apparatus for X-Ray Diffraction Imaging

  • Chapter
  • First Online:
  • 729 Accesses

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 210))

Abstract

To visualize the structures of frozen-hydrated non-crystalline biological particles such as cells and organelles, two types of diffraction apparatus were developed for X-ray diffraction imaging (XDI) experiments at cryogenic temperatures using synchrotron X-rays and X-ray free electron laser (XFEL) pulses . Cryogenic experiments are advantageous for the suppression of the radiation damage of specimens over the long exposure times in synchrotron experiments. In addition, frozen-hydrated biological specimens are free from dehydration and bubbling under vacuum conditions at ambient temperature. One apparatus, KOTOBUKI-1, is dedicated to cryogenic XDI experiments at the synchrotron radiation facility SPring-8 . Another apparatus, named TAKASAGO-6, was developed for cryogenic XFEL -XDI experiments at SACLA . Each apparatus is equipped with a cryogenic pot mounted on a goniometer stage for the collection of diffraction data at 66–80 K. The details of the devices used in these apparatuses are introduced together with the miscellaneous devices assisting their practical use. This chapter provides examples and clues to construct a new diffraction apparatus for diffraction experiments at cryogenic temperatures, including the delivery of cooled specimens.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. H. Jiang et al., Proc. Natl. Acad. Sci. U.S.A. 107, 11234 (2010)

    Google Scholar 

  2. Y. Nishino et al., Phys. Rev. Lett. 102, 018101 (2009)

    Google Scholar 

  3. C. Song et al., Biophys. J. 107, 1074 (2014)

    Google Scholar 

  4. S. Kassemeyer, Ultrafast coherent diffractive imaging of nanoparticles using X-ray free-electron laser radiation (Doctoral dissertation, Fachbereich Physik der Freien Universität Berlin) (2014)

    Google Scholar 

  5. M.M. Seibert et al., Nature 470, 78 (2011)

    Google Scholar 

  6. T. Kimura et al., Nat. Commun. 5, 3052 (2014)

    Google Scholar 

  7. T. Ekeberg et al., Phys. Rev. Lett. 114, 09810 (2015)

    Google Scholar 

  8. G. van der Schot et al., Nat. Commun. 6, 5704 (2015)

    Google Scholar 

  9. M.F. Hantke et al., Nat. Photon. 8, 943 (2014)

    Google Scholar 

  10. D. Shapiro et al., Proc. Natl. Acad. Sci. U.S.A . 102, 15343 (2005)

    Google Scholar 

  11. X. Huang et al., Phys. Rev. Lett. 103, 198101 (2009)

    Google Scholar 

  12. E. Lima et al., Phys. Rev. Lett. 103, 198102 (2009)

    Google Scholar 

  13. E. Lima et al., J. Microscopy 249, 1 (2013)

    Google Scholar 

  14. Y. Takayama, M. Nakasako, Rev. Sci. Instrum 83, 054301 (2012)

    Google Scholar 

  15. Y. Takayama et al., Plant Cell Physiol. 56, 1272 (2015)

    Google Scholar 

  16. T. Oroguchi et al., J. Phys. B: At. Mol. Opt. Phys. 48, 184003 (2015)

    Google Scholar 

  17. H. Kameda et al., J. Biochem. (Tokyo) 161, 55 (2017)

    Google Scholar 

  18. J. Miao et al., Proc. Natl. Acad. Sci. U.S.A. 100, 110 (2003)

    Google Scholar 

  19. C. Song et al., Phys. Rev. Lett. 101, 158101 (2008)

    Google Scholar 

  20. D. Nam et al., Phys. Rev. Lett. 110, 098103 (2013)

    Google Scholar 

  21. M. Nakasako, Philos. Trans. R. Soc. London, Ser. B 359, 1191 (2004)

    Google Scholar 

  22. E. O'Toole, G. Wray, J. Kremer, and J. R. McIntosh, J. Struct. Biol. 110, 55 (1993)

    Google Scholar 

  23. S. B. Hayward, R. M. Glaeser, Ultramicroscopy 4, 201 (1979)

    Google Scholar 

  24. A.W. Robards, U.B. Sleytr, Low Temperature Methods in Biological Electron Microscopy (Elsevier, Amsterdam, 1991)

    Google Scholar 

  25. J. Dubochet et al., Quart. Rev. Biophys. 21, 129 (1988)

    Google Scholar 

  26. R.A. Grassucci, D. J. Taylor, J. Frank, Nat. Protoc. 2, 3239 (2007)

    Google Scholar 

  27. M. Nakasako, J. Mol. Biol. 289, 547–564 (1999)

    Google Scholar 

  28. C. Chen, Lancet 1, 884 (1986)

    Google Scholar 

  29. O. Schwartz, Int. J. Oral Maxillofac. Surg. 15, 30 (1986)

    Google Scholar 

  30. C.M.O. Medeiros, F. Forell, A.T.D. Oliveira, J.L. Rodrigues, Theriogenology 57, 327 (2002)

    Google Scholar 

  31. L.F. Gibson, J.T. Khoury, Let. Appl. Microbiol. 3, 127 (1986)

    Google Scholar 

  32. M.R. Howells et al., J. Electron Spectrosc. Relat. Phenom. 170, 4 (2009)

    Google Scholar 

  33. M. Nakasako, M. Yamamoto, BUTSURI 70, 702 (2015)

    Google Scholar 

  34. R.B.G. Ravelli, E.F. Garman, Curr. Opin. Struct. Biol. 16, 624 (2006)

    Google Scholar 

  35. M. Adrian, J. Dubochet, J. Lepault, A.W. McDowall, Nature 308, 32 (1984)

    Google Scholar 

  36. R. Henderson, Quart. Rev. Biophys. 28, 171 (1995)

    Google Scholar 

  37. B. Ziaja et al., New J. Phys. 14, 115015 (2012)

    Google Scholar 

  38. J. Maser et al., J. Microscopy 197, 68 (2000)

    Google Scholar 

  39. T. Beetz et al., Nucl. Instrum. Methods Phys. Res., Sect. A 545, 459 (2005)

    Google Scholar 

  40. J.A. Rodriguez et al., IUCrJ 2, 575 (2015)

    Google Scholar 

  41. T.-Y. Teng, J. Appl. Cryst. 23, 387 (1990)

    Google Scholar 

  42. R. Neutz et al., Nature 406, 752 (2000)

    Google Scholar 

  43. H.N. Chapman et al., Nat. Phys. 2, 839 (2006)

    Google Scholar 

  44. K. Hirata et al., Nat. Methods 11, 734 (2014)

    Google Scholar 

  45. J. Als-Nielsen, D. McMorrow, Elements of Modern X-ray Physics (Wiley, New York, 2011)

    Google Scholar 

  46. M. Born, E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  47. M. Nakasako et al., Rev. Sci. Instrum. 84, 093705 (2013)

    Google Scholar 

  48. L.E. Delong, O.G. Symko, J.C. Wheatley, Rev. Sci. Instrum. 42, 147 (1971)

    Google Scholar 

  49. K. Tamasaku et al., Nucl. Instrum. Meth. A 467–468, 686 (2001)

    Google Scholar 

  50. A. Casanas et al., Acta Crystallogra. D72, 1036 (2016)

    Google Scholar 

  51. C.H. Kuo, C.H. Chen, M.H. Huang, Adv. Funct. Mater. 17, 3773 (2007)

    Google Scholar 

  52. Y. Sekiguchi, T. Oroguchi, Y. Takayama, M. Nakasako, J. Synchrotron Rad. 21, 600 (2014)

    Google Scholar 

  53. T. Ishikawa et al., Nat. Photon. 6, 540 (2012)

    Google Scholar 

  54. K. Tono et al., New J. Phys. 15, 083035 (2013)

    Google Scholar 

  55. H. Yumoto et al., Nat. Photon. 7, 43 (2013)

    Google Scholar 

  56. A. Kobayashi et al., Rev. Sci. Instrum. 87, 053109 (2016)

    Google Scholar 

  57. T. Kameshima et al., Rev. Sci. Instrum. 85, 033110 (2014)

    Google Scholar 

  58. C. Gutt et al., Phys. Rev. Lett. 108, 024801 (2012)

    Google Scholar 

  59. F. Lehmkühler et al., Sci. Rep. 4, 5234 (2014)

    Google Scholar 

  60. A. Kobayashi et al., Sci. Rep. 8, 831 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Nakasako .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Japan KK, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nakasako, M. (2018). Diffraction Apparatus for X-Ray Diffraction Imaging. In: X-Ray Diffraction Imaging of Biological Cells. Springer Series in Optical Sciences, vol 210. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56618-2_4

Download citation

Publish with us

Policies and ethics