Skip to main content

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 210))

  • 726 Accesses

Abstract

Biological cells are basic units in life. They are composed of a huge number of biological molecules, such as proteins, nucleic acids, lipids, sugar and organic molecules and inorganic ions. The biological macromolecules form well-organized compartments, so-called organelle . The ultimate goal of cell biology would be the complete illustration of cellular events at high spatial and temporal resolutions. To illustrate spatiotemporal events in biological cells, various methods for microscopic observation have been innovated. Here, prior to introduced X-ray diffraction imaging (XDI) , typical microscopic methods are introduced for visualizing the internal structures of cells, such as light microscopy, transmission electron microscopy, and X-ray imaging techniques. In addition, possible roles of XDI in visualizing cells are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Alberts, et al., Molecular Biology of the Cell (Garland Science, New York, 2014)

    Google Scholar 

  2. E. Schrödinger, What is life? The physical aspect of living cell (Cambridge University Press, Cambridge, 1944)

    Google Scholar 

  3. C.I. Blenden, J. Tooze, Introduction to Protein Structure (Garland Publishing Inc, New York, 1999)

    Google Scholar 

  4. D.I. Svergun, M.H.J. Koch, P.A. Timmins, R.P. May, Small Angle X-ray and Neutron Scattering from Solutions of Biological Macromolecules (Oxford University Press, Oxford, 2013)

    Book  Google Scholar 

  5. J. Als-Nielsen, D. McMorrow, Elements of Modern X-ray Physics, 2nd edn. (Wiley, London, 2011)

    Book  Google Scholar 

  6. J. Drenth, Principles of Protein X-ray Crystallography (Springer, New York, 1994)

    Book  Google Scholar 

  7. J. Frank, Three-Dimensional Electron Microscopy of Macromolecular Assemblies (Oxford University Press, Oxford, 2006)

    Book  Google Scholar 

  8. D.B. Murphy, M.W. Davidson, Fundamentals of Light Microscopy and Electronic Imaging (Wiley, New Jersey, 2012)

    Book  Google Scholar 

  9. J. Miao, D. Sayre, H.N. Chapman, J. Opt. Soc. Am. A 15, 1662 (1998)

    Article  ADS  Google Scholar 

  10. J. Miao, P. Charalambous, J. Kirz, D. Sayre, Nature 400, 342 (1999)

    Article  ADS  Google Scholar 

  11. P.P. Mondal, A. Diaspro, Fundamentals of Fluorescence Microscopy (Springer, Berlin, 2014)

    Book  Google Scholar 

  12. U. Kubitscheck (ed.), Fluorescence Microscopy: From Principles to Biological Applications (Wiley, New York, 2013)

    Google Scholar 

  13. M. Born, E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999)

    Book  Google Scholar 

  14. H. Noji, R. Yasuda, M. Yoshida, K. Kinoshita Jr., Nature 386, 299 (1997)

    Article  ADS  Google Scholar 

  15. O. Shimomura, F.H. Johnson, Y. Saiga, J. Cell. Comp. Physiol. 59, 223 (1962)

    Article  Google Scholar 

  16. A. Miyawaki, Microscopy 62, 63 (2013)

    Article  Google Scholar 

  17. P. Davidovits, M.D. Egger, Nature 223, 831 (1969)

    Article  ADS  Google Scholar 

  18. J.G. White, W.B. Amos, M. Fordham, J. Cell Biol. 105, 41 (1987)

    Article  Google Scholar 

  19. B. Huang, M. Bates, X. Zhuang, Ann. Rev. Biochem. 78, 993 (2009)

    Article  Google Scholar 

  20. M.J. Rust, M. Bates, X. Zhung, Nat. Methods 3, 793 (2006)

    Article  Google Scholar 

  21. M.G.L. Gustaffson, J. Microsc. 198, 82 (2000)

    Article  Google Scholar 

  22. T.A. Klar, S.W. Hell, Opt. Lett. 19, 780 (1994)

    Article  ADS  Google Scholar 

  23. J. Dubochet, et al., Q. Rev. Biophys. 21, 129 (1988)

    Google Scholar 

  24. A.M. Glauert, P.R. Lewis, Biological Specimen Preparation for Transmission Electron Microscopy (Princeton University Press, Princeton, 2014)

    Google Scholar 

  25. A.W. Robards, U.B. Sleytr, Low Temperature Methods in Biological Electron Microscopy (Elsevier, Amsterdam, 1991)

    Google Scholar 

  26. L. Gan, G.J. Jensen, Q. Rev. Biophys. 45, 27 (2011)

    Article  Google Scholar 

  27. S. Subramaniam, W. Kühlbrandtt, R. Henderson, IUCrJ 3, 3 (2016)

    Article  Google Scholar 

  28. S.H.W. Scheres, J. Struct. Biol. 180, 519 (2012)

    Article  Google Scholar 

  29. J. Kosinski et al., Science 352, 363 (2016)

    Article  ADS  Google Scholar 

  30. F. Song et al., Science 344, 376 (2014)

    Article  ADS  Google Scholar 

  31. C. Yan, et al., Science 353, 904 (2016)

    Google Scholar 

  32. M.A.L. Gros, G. McDermott, C.A. Larabell, Curr. Opin. Struct. Biol. 15, 593 (2005)

    Article  Google Scholar 

  33. G. Schneider et al., Nat. Methods 7, 985 (2010)

    Article  Google Scholar 

  34. T. Paunesku, S. Vogt, J. Masr, B. Lai, G. Woloschak, J. Cell. Biochem. 99, 1489 (2006)

    Article  Google Scholar 

  35. J. Deng, Proc. Natl. Acad. Sci. USA 112, 2314 (2015)

    Article  ADS  Google Scholar 

  36. D. Sayre, Acta Crystallogr. 5, 843 (1952)

    Article  Google Scholar 

  37. J. Miao, T. Ishikawa, I.K. Robinson, M.M. Murnane, Science 348, 530 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  38. J.R. Fienup, Appl. Opt. 21, 2758 (1982)

    Article  ADS  Google Scholar 

  39. K. Tamasaku, et al., Nucl. Instrum. Methods A 467–468, 686 (2001)

    Google Scholar 

  40. J. Miao, et al., Phys. Rev. Lett. 89, 088303 (2002)

    Google Scholar 

  41. J. Miao, et al., Proc. Natl. Acad. Sci. USA 100, 110 (2003)

    Google Scholar 

  42. J. Miao et al., Phys. Rev. Lett. 97, 215503 (2006)

    Article  ADS  Google Scholar 

  43. C. Song et al., Phys. Rev. Lett. 101, 158101 (2008)

    Article  ADS  Google Scholar 

  44. Y. Nishino, et al., Phys. Rev. Lett. 102, 018101 (2009)

    Google Scholar 

  45. H. Jiang et al., Proc. Natl. Acad. Sci. USA 107, 11234 (2010)

    Article  ADS  Google Scholar 

  46. C. Song, et al., Biophys. J. 107, 1074 (2014)

    Google Scholar 

  47. D. Nam et al., Phys. Rev. Lett. 110, 098103 (2013)

    Article  ADS  Google Scholar 

  48. Y. Takayama, M. Nakasako, Rev. Sci. Instrum. 83, 054301 (2012)

    Article  ADS  Google Scholar 

  49. D. Shapiro et al., Proc. Natl. Acad. Sci. U.S.A. 102, 15343 (2005)

    Article  ADS  Google Scholar 

  50. J.W. Pflugrath, Acta Crystallogr. F71, 622 (2015)

    Google Scholar 

  51. E. Lima, et al., Phys. Rev. Lett. 103, 198102 (2009)

    Google Scholar 

  52. X. Huang et al., Phys. Rev. Lett. 103, 198101 (2009)

    Article  ADS  Google Scholar 

  53. M. Nakasako et al., Rev. Sci. Instrum. 84, 093705 (2013)

    Article  ADS  Google Scholar 

  54. R. Henderson, Q. Rev. Biophys. 28, 171 (1995)

    Article  Google Scholar 

  55. M.R. Howells et al., J. Electron Spectrosc. Relat. Phenom. 170, 4 (2009)

    Article  Google Scholar 

  56. K. Hirata et al., Nat. Methods 11, 734 (2014)

    Article  Google Scholar 

  57. P. Emma et al., Nat. Photon. 4, 641 (2010)

    Article  ADS  Google Scholar 

  58. T. Ishikawa et al., Nat. Photon. 6, 540 (2012)

    Article  ADS  Google Scholar 

  59. M.M. Seibert et al., Nature 470, 78 (2011)

    Article  ADS  Google Scholar 

  60. T. Ekerberg et al., Phys. Rev. Lett. 114, 098102 (2015)

    Article  ADS  Google Scholar 

  61. T. Oroguchi et al., J. Phys. B: At. Mol. Opt. Phys. 48, 184003 (2015)

    Article  ADS  Google Scholar 

  62. Y. Takayama, et al., Plant Cell Physiol. 56, 1272 (2015)

    Google Scholar 

  63. T. Kimura et al., Nat. Commun. 5, 3052 (2014)

    Article  Google Scholar 

  64. G. van der Schot et al., Nat. Commun. 6, 5704 (2015)

    Article  Google Scholar 

  65. K. Tono et al., New J. Phys. 15, 083035 (2013)

    Article  ADS  Google Scholar 

  66. H. Yumoto et al., Nat. Photonics 7, 43 (2013)

    Article  ADS  Google Scholar 

  67. R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, and. J. Hajdu Nat. 406, 752 (2000)

    Article  Google Scholar 

  68. H.N. Chapman et al., Nat. Phys. 2, 839 (2006)

    Article  Google Scholar 

  69. A. Diaz et al., J. Struct. Biol. 192, 461 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Nakasako .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Japan KK, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nakasako, M. (2018). Introduction. In: X-Ray Diffraction Imaging of Biological Cells. Springer Series in Optical Sciences, vol 210. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56618-2_1

Download citation

Publish with us

Policies and ethics