Skip to main content

Sex Determination and Differentiation in Birds

  • Chapter
  • First Online:

Part of the book series: Diversity and Commonality in Animals ((DCA))

Abstract

The sex of birds is genetically determined. Females have a heterogametic sex chromosome constitution (ZW), whereas males are homogametic (ZZ). Genes carried on these sex chromosomes control gonadal differentiation and development during embryogenesis. There are two hypotheses for the mechanisms of sex determination. One proposes that the dosage of genes on the Z chromosome determines the sexual differentiation of undifferentiated gonads, and the other proposes that W-linked genes dominantly determine ovary differentiation or inhibit testis differentiation. Z-linked dmrt1, which is a strong candidate for an avian sex-determining gene, supports the former hypothesis. Although no candidate for the W-linked gene has been identified, extensive evidence for spontaneous sex reversal in birds and aneuploid chimeric chickens with an abnormal sex chromosome constitution strongly supports the latter hypothesis. Undifferentiated and bipotential gonads differentiate into either testes or ovaries via several genes. The developed gonads release sex hormones to masculinize or feminize the brain and body. However, this process cannot explain spontaneous sex-chimeric birds, i.e., gynandromorphs, in which one side of the bird appears male and the other female. This chapter introduces the sex-determining mechanism as well as the genes and sex hormones mainly involved in gonadal differentiation and development of the chicken.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agate RJ, Grisham W, Wade J, Mann S, Wingfield J, Schanen C, Palotie A, Arnold AP (2003) Neural, not gonadal, origin of brain sex differences in a gynandromorphic finch. Proc Natl Acad Sci U S A 100:4873–4878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An LL, Li G, KF W, Ma XT, Zheng GG, Qiu LG, Song YH (2005) High expression of EDAG and its significance in AML. Leukemia 19:1499–1502

    Article  CAS  PubMed  Google Scholar 

  • Ayers KL, Sinclair AH, Smith CA (2013) The molecular genetics of ovarian differentiation in the avian model. Sex Dev 7:80–94

    Article  CAS  PubMed  Google Scholar 

  • Biason-Lauber A, Konrad D (2008) WNT4 and sex development. Sex Dev 2:210–218

    Article  CAS  PubMed  Google Scholar 

  • Carlon N, Stahl A (1985) Origin of the somatic components in chick embryonic gonads. Arch Anat Microsc Morphol Exp 74:52–59

    PubMed  CAS  Google Scholar 

  • Chue J, Smith CA (2011) Sex determination and sexual differentiation in the avian model. FEBS J 278:1027–1034

    Article  CAS  PubMed  Google Scholar 

  • Clinton M, Zhao D, McBride D (2012) Evidence for avian cell autonomous sex identity (CASI) and implications for the sex-determination process? Chromosom Res 20:177–190

    Article  CAS  Google Scholar 

  • Cock AG (1955) Half-and-half mosaics in the fowl. J Genet 53:49–80

    Article  Google Scholar 

  • Elbrecht A, Smith RG (1992) Aromatase enzyme activity and sex determination in chickens. Science 255:467–470

    Article  CAS  PubMed  Google Scholar 

  • Forbes TR (1947) The crowing hen: early observations on spontaneous sex reversal in birds. Yale J Biol Med 19:955–970

    PubMed  PubMed Central  CAS  Google Scholar 

  • Govoroun MS, Pannetier M, Pailhoux E, Cocquet J, Brillard JP, Couty I, Batellier F, Cotinot C (2004) Isolation of chicken homolog of the FOXL2 gene and comparison of its expression patterns with those of aromatase during ovarian development. Dev Dyn 231:859–870

    Article  CAS  PubMed  Google Scholar 

  • Graves JAM (2003) Sex and death in birds: a model of dosage compensation that predicts lethality of sex chromosome aneuploids. Cytogenet Genome Res 101:278–282

    Article  CAS  PubMed  Google Scholar 

  • Hollander WF (1944) Mosaic effects in domestic birds. Q Rev Biol 19:285–307

    Article  Google Scholar 

  • Hollander WF (1975) Sectorial mosaics in the domestic pigeon: 25 more years. J Hered 66:197–202

    Article  Google Scholar 

  • Hori T, Asakawa S, Itoh Y, Shimizu N, Mizuno S (2000) Wpkci, encoding an altered form of PKCI, is conserved widely on the avian W chromosome and expressed in early female embryos: implication of its role in female sex determination. Mol Biol Cell 11:3645–3660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson QJ, Smith CA, Sinclair AH (2005) Aromatase inhibition method reduces expression of FOXL2 in the embryonic chicken ovary. Dev Dyn 233:1052–1055

    Article  CAS  PubMed  Google Scholar 

  • Hutson J, Ikawa H, Donahoe PK (1981) The ontogeny of Mullerian inhibiting substance in the gonads of the chicken. J Pediatr Surg 16:822–827

    Article  CAS  PubMed  Google Scholar 

  • Hutson JM, Ikawa H, Donahoe PK (1982) Estrogen inhibition of Mullerian inhibiting substance in the chick embryo. J Pediatr Surg 17:953–959

    Article  CAS  PubMed  Google Scholar 

  • International Chicken Genome Sequencing Consortium (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432(7018):695–716

    Article  CAS  Google Scholar 

  • Itoh Y, Replogle K, Kim YH, Wade J, Clayton DF, Arnold AP (2010) Sex bias and dosage compensation in the zebra finch versus chicken genomes: general and specialized patterns among birds. Genome Res 20:512–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Josso N, Picard JY (1986) Anti-Müllerian hormone. Physiol Rev 66:1038–1090

    Article  CAS  PubMed  Google Scholar 

  • Josso N, Cate RL, Picard JY, Vigier B, di Clemente N, Wilson C, Imbeaud S, Pepinsky RB, Guerrier D, Boussin L et al (1993) Anti-müllerian hormone: the Jost factor. Recent Prog Horm Res 48:1–59

    PubMed  CAS  Google Scholar 

  • Josso N, di Clemente N, Gouédard L (2001) Anti-Müllerian hormone and its receptors. Mol Cell Endocrinol 179:25–32

    Article  CAS  PubMed  Google Scholar 

  • Kuroda Y, Arai N, Arita M, Teranishi M, Hori T, Harata M, Mizuno S (2001) Absence of Z-chromosome inactivation for five genes in male chickens. Chromosom Res 9:457–468

    Article  CAS  Google Scholar 

  • Kuroiwa A, Yokomine T, Sasaki H, Tsudzuki M, Tanaka K, Namikawa T, Matsuda Y (2002) Biallelic expression of Z-linked genes in male chickens. Cytogenet Genome Res 99:310–314

    Article  CAS  PubMed  Google Scholar 

  • Lambeth LS, Smith CA (2012) Disorder of sexual development in poultry. Sex Dev 6:96–103

    Article  CAS  PubMed  Google Scholar 

  • Lambeth LS, Raymond CS, Roeszler KN, Kuroiwa A, Nakata T, Zarkower D, Smith CA (2014) Over-expression of DMRT1 induces the male pathway in embryonic chicken gonads. Dev Biol 389:160–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambeth LS, Ayers KL, Cutting AD, Doran TJ, Sinclair AH, Smith CA (2015) Anti-Müllerian hormone is required for chicken embryonic urogenital system growth but not sexual differentiation. Biol Reprod 93:138. [Epub ahead of print]

    Article  CAS  PubMed  Google Scholar 

  • Lin M, Thorne MH, Martin IC, Sheldon BL, Jones RC (1995) Development of the gonads in the triploid (ZZW and ZZZ) fowl, Gallus domesticus, and comparison with normal diploid males (ZZ) and females (ZW). Reprod Fertil Dev 7:1185–1197

    Article  CAS  PubMed  Google Scholar 

  • Liu CF, Liu C, Yao HH (2010) Building pathways for ovary organogenesis in the mouse embryo. Curr Top Dev Biol 90:263–290

    Article  PubMed  PubMed Central  Google Scholar 

  • Loffler KA, Zarkower D, Koopman P (2003) Etiology of ovarian failure in blepharophimosis ptosis epicanthus inversus syndrome: FOXL2 is a conserved, early-acting gene in vertebrate ovarian development. Endocrinology 144:3237–3243

    Article  CAS  PubMed  Google Scholar 

  • McQueen HA, McBride D, Miele G, Bird AP, Clinton M (2001) Dosage compensation in birds. Curr Biol 11:253–257

    Article  CAS  PubMed  Google Scholar 

  • Nakata T, Ishiguro M, Aduma N, Izumi H, Kuroiwa A (2013) Chicken hemogen homolog is involved in the chicken-specific sex-determining mechanism. Proc Natl Acad Sci U S A 110:3417–3422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Neill M, Binder M, Smith C, Andrews J, Reed K, Smith M, Millar C, Lambert D, Sinclair A (2000) ASW: a gene with conserved avian W-linkage and female specific expression in chick embryonic gonad. Dev Genes Evol 210:243–249

    Article  PubMed  Google Scholar 

  • Pace HC, Brenner C (2003) Feminizing chicks: a model for avian sex determination based on titration of Hint enzyme activity and the predicted structure of an Asw-Hint heterodimer. Genome Biol 4:R18

    Article  PubMed  PubMed Central  Google Scholar 

  • Pisarska MD, Barlow G, Kuo FT (2011) Minireview: roles of the forkhead transcription factor FOXL2 in granulosa cell biology and pathology. Endocrinology 152:1199–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond CS, Kettlewell JR, Hirsch B, Bardwell VJ, Zarkower D (1999) Expression of Dmrt1 in the genital ridge of mouse and chicken embryos suggests a role in vertebrate sexual development. Dev Biol 215:208–220

    Article  CAS  PubMed  Google Scholar 

  • Reed KJ, Sinclair AH (2002) FET-1: a novel W-linked, female specific gene up-regulated in the embryonic chicken ovary. Mech Dev 119:S87–S90

    Article  PubMed  Google Scholar 

  • Scheib D (1983) Effects and role of estrogens in avian gonadal differentiation. Differ Res Biol Diver 23(Suppl):S87–S92

    Google Scholar 

  • Sekido R, Lovell-Badge R (2008) Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature 453:930–934

    Article  CAS  PubMed  Google Scholar 

  • Smith CA, McClive PJ, Western PS, Reed KJ, Sinclair AH (1999) Conservation of a sex-determining gene. Nature 402:601–602

    Article  CAS  PubMed  Google Scholar 

  • Smith CA, McClive PJ, Hudson Q, Sinclair AH (2005) Male-specific cell migration into the developing gonad is a conserved process involving PDGF signalling. Dev Biol 284:337–350

    Article  CAS  PubMed  Google Scholar 

  • Smith CA, Shoemaker CM, Roeszler KN, Queen J, Crews D, Sinclair AH (2008) Cloning and expression of R-Spondin1 in different vertebrates suggests a conserved role in ovarian development. BMC Dev Biol 8:72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith CA, Roeszler KN, Sinclair AH (2009a) Genetic evidence against a role for W-linked histidine triad nucleotide binding protein (HINTW) in avian sex determination. Int J Dev Biol 53:59–67

    Article  CAS  PubMed  Google Scholar 

  • Smith CA, Roeszler KN, Ohnesorg T, Cummins DM, Farlie PG, Doran TJ, Sinclair AH (2009b) The avian Z-linked gene DMRT1 is required for male sex determination in the chicken. Nature 461:267–271

    Article  CAS  PubMed  Google Scholar 

  • Taber E (1964) Intersexuality in birds. In: Armstrong CN, Marshall AJ (eds) Intersexuality of vertebrates including man. Academic, New York, pp 285–310

    Google Scholar 

  • Thorne MH, Sheldon BL (1991) Cytological evidence of maternal meiotic errors in a line of chickens with a high incidence of triploidy. Cytogenet Cell Genet 57:206–210

    Article  CAS  PubMed  Google Scholar 

  • Thorne MH, Sheldon BL (1993) Triploid intersex and chimeric chickens: useful models for studies of avian sex determination. In: Reed KC, Marshall Graves JA (eds) Sex chromosomes and sex-determining genes. Harwood Academic Publishers, Chur, pp 199–205

    Google Scholar 

  • Tran D, Josso N (1977) Relationship between avian and mammalian anti-Mulllerian hormones. Biol Reprod 16:267–273

    Article  CAS  PubMed  Google Scholar 

  • Ukeshima A (1996) Germ cell death in the degenerating right ovary of the chick embryo. Zool Sci 13:559–563

    Article  CAS  PubMed  Google Scholar 

  • Vigier B, Tran D, du Mesnil du Buisson F, Heyman Y, Josso N (1983) Use of monoclonal antibody techniques to study the ontogeny of bovine anti-Müllerian hormone. J Reprod Fertil 69:207–214

    Article  CAS  PubMed  Google Scholar 

  • Wang DS, Kobayashi T, Zhou LY, Paul-Prasanth B, Ijiri S, Sakai F, Okubo K, Morohashi K, Nagahama Y (2007) Foxl2 up-regulates aromatase gene transcription in a female-specific manner by binding to the promoter as well as interacting with ad4 binding protein/steroidogenic factor 1. Mol Endocrinol 21:712–725

    Article  CAS  PubMed  Google Scholar 

  • Yang LV, Nicholson RH, Kaplan J, Galy A, Li L (2001) Hemogen is a novel nuclear factor specifically expressed in mouse hematopoietic development and its human homologue EDAG maps to chromosome 9q22, a region containing breakpoints of hematological neoplasms. Mech Dev 104:105–111

    Article  CAS  PubMed  Google Scholar 

  • Zhao D, McBride D, Nandi S, McQueen HA, McGrew MJ, Hocking PM, Lewis PD, Sang HM, Clinton M (2010) Somatic sex identity is cell autonomous in the chicken. Nature 464:237–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Svingen T, Ng ET, Koopman P (2015) Female-to-male sex reversal in mice caused by transgenic overexpression of Dmrt1. Development 142:1083–1088

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asato Kuroiwa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Japan KK, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuroiwa, A. (2018). Sex Determination and Differentiation in Birds. In: Kobayashi, K., Kitano, T., Iwao, Y., Kondo, M. (eds) Reproductive and Developmental Strategies. Diversity and Commonality in Animals. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56609-0_19

Download citation

Publish with us

Policies and ethics