Skip to main content

Reproductive Strategies in Annelida: Germ Cell Formation and Regeneration

  • Chapter
  • First Online:
Reproductive and Developmental Strategies

Part of the book series: Diversity and Commonality in Animals ((DCA))

Abstract

 Annelida are metameric, eucoelomate bilaterian worms belonging to Lophotrochozoa, which is a major group of protostomes. This phylum includes Polychaeta, Oligochaeta, Hirudinea (leeches), and Archiannelida, and it is an important link in the evolution of body plan, regeneration, and reproduction. Although annelids generally reproduce sexually, many species can switch to asexual reproduction, proliferating exponentially, as seen in planarians, hydras, and some other lower invertebrates. Asexual reproduction is achieved through dedifferentiation and through stem cells regeneration, instead of being based on germ cells as in the case of sexual reproduction. Thus, studies on regeneration mechanisms and germ cells are essential for understanding annelid reproduction. In this chapter, Annelida’s reproduction and germ cell formation and regeneration are reviewed. Based on our research on the oligochaete Enchytraeus japonensis, a unique process of germ cell regeneration during asexual reproduction is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akimenko MA, Johnson SL, Westerfield M, Ekker M (1995) Differential induction of four msx homeobox genes during fin development and regeneration in zebrafish. Development 121(2):347–357

    PubMed  CAS  Google Scholar 

  • Avel M (1959) Classe des Anne’lides Oligoche’tes. Rev. Suisse Zool. Traite´ de Zoologie. Masson et Cie, Paris

    Google Scholar 

  • Avel M (1961) L’influence du system nerveux sur la regeneration chez les urodeles et les oligochaetes. Bull Soc Zool Fr86

    Google Scholar 

  • Bacci G, Bortesi O (1961) Pure males and females from hermaphroditic strains of Ophryotrocha puerilis. Experientia 17:229–230

    Article  CAS  PubMed  Google Scholar 

  • Backfisch B, Veedin Rajan VB, Fischer RM, Lohs C, Arboleda E, Tessmar-Raible K, Raible F (2013) Stable transgenesis in the marine annelid Platynereis dumerilii sheds new light on photoreceptor evolution. Proc Natl Acad Sci U S A 110(1):193–198. https://doi.org/10.1073/pnas.1209657109

    Article  PubMed  CAS  Google Scholar 

  • Backfisch B, Kozin VV, Kirchmaier S, Tessmar-Raible K, Raible F (2014) Tools for gene-regulatory analyses in the marine annelid Platynereis dumerilii. PLoS One 9(4):e93076. https://doi.org/10.1371/journal.pone.0093076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baguna J (2012) The planarian neoblast: the rambling history of its origin and some current black boxes. Int J Dev Biol 56(1–3):19–37. https://doi.org/10.1387/ijdb.113463jb

    Article  PubMed  CAS  Google Scholar 

  • Bannister S, Antonova O, Polo A, Lohs C, Hallay N, Valinciute A, Raible F, Tessmar-Raible K (2014) TALENs mediate efficient and heritable mutation of endogenous genes in the marine annelid Platynereis dumerilii. Genetics 197(1):77–89. https://doi.org/10.1534/genetics.113.161091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bell AW (1959) Enchytraeus fragmentosus, a new species of naturally fragmenting oligochaete worm. Science (New York, NY) 129(3358):1278. https://doi.org/10.1126/science.129.3358.1278-a

    Article  CAS  Google Scholar 

  • Bely AE (2006) Distribution of segment regeneration ability in the Annelida. Integr Comp Biol 46(4):508–518. https://doi.org/10.1093/icb/icj051

    Article  PubMed  Google Scholar 

  • Bely AE, Wray GA (2001) Evolution of regeneration and fission in annelids: insights from engrailed- and orthodenticle-class gene expression. Development (Cambridge, England) 128(14):2781–2791

    CAS  Google Scholar 

  • Bentley MG, Olive PJW, Last K (2001) Sexual satellites, moonlight and the nuptial dances of worms: the influence of the moon on the reproduction of marine animals. Earth Moon Planet 85-86:67–84

    Article  Google Scholar 

  • Berrill NJ (1952) Regeneration and budding in worms. Biol Rev 27:401–438

    Article  Google Scholar 

  • Bilej M (1994) Cellular defense mechanisms. In: Vetvicka V, Sima P, Cooper EL, Bilej M, Roch P (eds) Immunology of annelids. CRC Press, Ann Arbor, pp 245–261

    Google Scholar 

  • Bouguenec V, Giani N (1989) Biological studies upon Enchytraeus variatus in breeding cultures. Hydrobiologia 180:151–165

    Article  Google Scholar 

  • Brusca RC, Brusca GJ (1990) Invertebrates. SINAUER Associates, Sunderland, MA

    Google Scholar 

  • Cho SJ, Valles Y, Weisblat DA (2014) Differential expression of conserved germ line markers and delayed segregation of male and female primordial germ cells in a hermaphrodite, the leech helobdella. Mol Biol Evol 31(2):341–354. https://doi.org/10.1093/molbev/mst201

    Article  PubMed  CAS  Google Scholar 

  • Christensen B (1959) Asexual reproduction in the Enchytraeidae (Olig.) Nature 184:1159–1160

    Article  Google Scholar 

  • Christensen B (1964) Regeneration of a new anterior end in Enchytraeus bigeminus (Enchytraeidae, Oligochaeta). Vidensk Medd Dan Natrur Foren 127:259–273

    Google Scholar 

  • Cornec JP, Cresp J, Delye P, Hoarau F, Reynaud G (1987) Tissue responses and organogenesis during regeneration in the oliogochaete Limnodrilus hoffmeisteri (Clap.) Can J Zool 65:403–414

    Article  Google Scholar 

  • Cox DN, Chao A, Baker J, Chang L, Qiao D, Lin H (1998) A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev 12(23):3715–3727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox DN, Chao A, Lin H (2000) piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. Development 127(3):503–514

    PubMed  CAS  Google Scholar 

  • Deng W, Lin H (2002) miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell 2(6):819–830

    Article  CAS  PubMed  Google Scholar 

  • Devries J (1971) Origine de la lignee germinale chez le lombricien Eisenia foetida. Ann Embryol Morphogen 4:37–43

    Google Scholar 

  • Dill KK, Seaver EC (2008) Vasa and nanos are coexpressed in somatic and germ line tissue from early embryonic cleavage stages through adulthood in the polychaete Capitella sp. I. Dev Genes Evol 218(9):453–463. https://doi.org/10.1007/s00427-008-0236-x

    Article  PubMed  Google Scholar 

  • Dorsett DA (1961) The reproduction and meintenance of Polydora ciliata (Johnst.) at Whitstable. J Mar Biol Ass 41:383–396

    Article  Google Scholar 

  • Eddy EM (1975) Germ plasm and the differentiation of the germ cell line. Int Rev Cytol 43:229–280

    Article  CAS  PubMed  Google Scholar 

  • Edwards CA, Lofty JR (1972) Biology of earthworms. Chapman and Hall, London

    Book  Google Scholar 

  • Extavour CG, Akam M (2003) Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 130(24):5869–5884. https://doi.org/10.1242/dev.00804

    Article  PubMed  CAS  Google Scholar 

  • Fischer A (1974) Stage and stage distribution in early oogenesis in the annelid, Platynereis dumerlii. Cell Tissue Res 156:35–45

    Article  CAS  PubMed  Google Scholar 

  • Fischer A (1975) The structure of symplasmic early oocytes and their enveloping sheath cells in the polychaete, Platynereis dumerilii. Cell Tissue Res 160:327–343

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara Y, Komiya T, Kawabata H, Sato M, Fujimoto H, Furusawa M, Noce T (1994) Isolation of a DEAD-family protein gene that encodes a murine homolog of Drosophila vasa and its specific expression in germ cell lineage. Proc Natl Acad Sci U S A 91(25):12258–12262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardiner DM, Blumberg B, Komine Y, Bryant SV (1995) Regulation of HoxA expression in developing and regenerating axolotl limbs. Development 121(6):1731–1741

    PubMed  CAS  Google Scholar 

  • Gates GE (1943) Some further notes on regeneration in Perionyx excavatus. Proc Nat Acad Sci India 13:168–179

    Google Scholar 

  • Giani VC Jr, Yamaguchi E, Boyle MJ, Seaver EC (2011) Somatic and germline expression of piwi during development and regeneration in the marine polychaete annelid Capitella teleta. EvoDevo 2:10. https://doi.org/10.1186/2041-9139-2-10

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodrich C (1945) Tbe study of nephridia and genital ducts since 1895. Quart Jour micr Sci 86:113–392

    CAS  Google Scholar 

  • Hauenschild C (1960) Lunar periodicity. Cold Spring Harb Symp Quant Biol 25:491–497

    Article  CAS  PubMed  Google Scholar 

  • Herlant-Meewis H (1954) Etude histologique des Aeolosomatida au cours de la reproduction asexuee. Arch Biol 65:73–134

    CAS  Google Scholar 

  • Herlant-Meewis H (1964a) Reconstitution du germen chez Lumbricillus lineatus (Enchytraeides). Arch Biol Paris 57:197–306

    Google Scholar 

  • Herlant-Meewis H (1964b) Contribution a l’etude de la regeneration chez les Oligochetes. Reconstitution du germen chez Lumbricillus lineatus (Enchytraeides). Premiere partie: elements regenerateurs. Ann Soc Zool Belg 77:5–47

    Google Scholar 

  • Iwanoff PP (1928) Die entwicklung der Larvalsegmente bei den Anneliden. Z Morphol Okol 10:62–161

    Article  Google Scholar 

  • Izuka A (1903) Observations on the Japanese palolo, Ceratocephale osawai. J coll Sci Tokyo 17:1–37

    Google Scholar 

  • Jamieson BGM (1992) Annelida, Chapter 3 oligochaeta. In: Harrison FW, Gardiner SL (eds) Microscopics anatomy of invertebrates, vol 7. Wiley-Liss, New York

    Google Scholar 

  • Jamieson BGM (2006) Non leech Clitellata. Reproductive biology and phylogeny of annelida. SP Science Publishers, Enfield

    Google Scholar 

  • Kang D, Pilon M, Weisblat DA (2002) Maternal and zygotic expression of a nanos-class gene in the leech Helobdella robusta: primordial germ cells arise from segmental mesoderm. Dev Biol 245(1):28–41. https://doi.org/10.1006/dbio.2002.0615

    Article  PubMed  CAS  Google Scholar 

  • Kato Y, Nakamoto A, Shiomi I, Nakao H, Shimizu T (2013) Primordial germ cells in an oligochaete annelid are specified according to the birth rank order in the mesodermal teloblast lineage. Dev Biol 379(2):246–257. https://doi.org/10.1016/j.ydbio.2013.04.028

    Article  PubMed  CAS  Google Scholar 

  • Khan P, Linkhart B, Simon HG (2002) Different regulation of T-box genes Tbx4 and Tbx5 during limb development and limb regeneration. Dev Biol 250(2):383–392

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S, Yamada M, Asaoka M, Kitamura T (1996) Essential role of the posterior morphogen nanos for germline development in Drosophila. Nature 380(6576):708–711. https://doi.org/10.1038/380708a0

    Article  PubMed  CAS  Google Scholar 

  • Koprunner M, Thisse C, Thisse B, Raz E (2001) A zebrafish nanos-related gene is essential for the development of primordial germ cells. Genes Dev 15(21):2877–2885. https://doi.org/10.1101/gad.212401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuramochi-Miyagawa S, Kimura T, Yomogida K, Kuroiwa A, Tadokoro Y, Fujita Y, Sato M, Matsuda Y, Nakano T (2001) Two mouse piwi-related genes: miwi and mili. Mech Dev 108(1–2):121–133

    Article  CAS  PubMed  Google Scholar 

  • Kuramochi-Miyagawa S, Kimura T, Ijiri TW, Isobe T, Asada N, Fujita Y, Ikawa M, Iwai N, Okabe M, Deng W, Lin H, Matsuda Y, Nakano T (2004) Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development 131(4):839–849. https://doi.org/10.1242/dev.00973

    Article  PubMed  CAS  Google Scholar 

  • Lau NC, Seto AG, Kim J, Kuramochi-Miyagawa S, Nakano T, Bartel DP, Kingston RE (2006) Characterization of the piRNA complex from rat testes. Science (New York, NY) 313(5785):363–367. https://doi.org/10.1126/science.1130164

    Article  CAS  Google Scholar 

  • Lentz TL (1969) Cytological studies of muscle dedifferentiation and differentiation during limb regeneration of the newt Triturus. Am J Anat 124(4):447–479. https://doi.org/10.1002/aja.1001240404

    Article  PubMed  CAS  Google Scholar 

  • Lo DC, Allen F, Brockes JP (1993) Reversal of muscle differentiation during urodele limb regeneration. Proc Natl Acad Sci U S A 90(15):7230–7234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malaquin A (1925) La ségrégation, au cours de l’ontogenèse, de deux cellules sexuelles primordiales, souches de la lignée germinale, chez Salmacina dysteri (Huxley). C R Acad Sci Paris 180:324–327

    Google Scholar 

  • Malaquin A (1934) Nouvelles observations sur la lignée germinale de l’Annélide Salmacina dysteri, Huxley. C R Acad Sci Paris 198:1804–1805

    Google Scholar 

  • Meyer A (1929) Die Entwicklung der Nephridien und Gonoblasten bei Tubifex rivulorum Lam. nebst Bemerkungen zum natürlichen System der Oligochâten. Z Wiss Zool 133:517–562

    Google Scholar 

  • Michaelsen W (1929) Zur Stammesgeschichte der Oligochaten. Z Wiss Zool 134:693–716

    Google Scholar 

  • Mochizuki K, Nishimiya-Fujisawa C, Fujisawa T (2001) Universal occurrence of the vasa-related genes among metazoans and their germline expression in Hydra. Dev Genes Evol 211(6):299–308

    Article  CAS  PubMed  Google Scholar 

  • Muller MC (2004) Nerve development, growth and differentiation during regeneration in Enchytraeus fragmentosus and Stylaria lacustris (Oligochaeta). Develop Growth Differ 46(5):471–478. https://doi.org/10.1111/j.1440-169x.2004.00763.x

    Article  Google Scholar 

  • Myohara M, Yoshida-Noro C, Kobari F, Tochinai S (1999) Fragmenting oligochaete Enchytraeus japonensis: a new material for regeneration study. Develop Growth Differ 41(5):549–555

    Article  CAS  Google Scholar 

  • Nakamura Y (1993) A new fragmenting Enchytaeid species, Enchytraeus japonensis from a cropped Kuroboku soil in Fukushima, Northern Japan (Enchytraeids in japan 5). Edaphologia 50:37–39

    Google Scholar 

  • Okada K (1941) The gametogenesis, the breeding habits, and the early development of Arenicola cristata Stimpson, a tubicolous polychaete. Sci Rep Tohoku Imp Univ Biol 16:99–145

    Google Scholar 

  • Olive PJW, Clark RB (1978) Physiology of annelids. Physiology of reproduction. Academic, New York

    Google Scholar 

  • Oyama A, Shimizu T (2007) Transient occurrence of vasa-expressing cells in nongenital segments during embryonic development in the oligochaete annelid Tubifex tubifex. Dev Genes Evol 217(10):675–690. https://doi.org/10.1007/s00427-007-0180-1

    Article  PubMed  CAS  Google Scholar 

  • Ozpolat BD, Bely AE (2015) Gonad establishment during asexual reproduction in the annelid Pristina leidyi. Dev Biol. https://doi.org/10.1016/j.ydbio.2015.06.001

  • Penners A, Stäblein A (1930) Über die Urkeimzellen bei Tubificiden (Tubifex rivulorum Lam. und Limnodrilus udekemianus Claparede). Z Wiss Zool 137:606–626

    Google Scholar 

  • Randolph H (1892) The regeneration of the tail in Lumbriculus. J Morphol 7:17–344

    Article  Google Scholar 

  • Rebscher N, Zelada-Gonzalez F, Banisch TU, Raible F, Arendt D (2007) Vasa unveils a common origin of germ cells and of somatic stem cells from the posterior growth zone in the polychaete Platynereis dumerilii. Dev Biol 306(2):599–611. https://doi.org/10.1016/j.ydbio.2007.03.521

    Article  PubMed  CAS  Google Scholar 

  • Rebscher N, Lidke AK, Ackermann CF (2012) Hidden in the crowd: primordial germ cells and somatic stem cells in the mesodermal posterior growth zone of the polychaete Platynereis dumerillii are two distinct cell populations. EvoDevo 3:9. https://doi.org/10.1186/2041-9139-3-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Reddien PW, Oviedo NJ, Jennings JR, Jenkin JC, Sanchez Alvarado A (2005) SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells. Science (New York, NY) 310(5752):1327–1330. https://doi.org/10.1126/science.1116110

    Article  CAS  Google Scholar 

  • Rossi L, Salvetti A, Lena A, Batistoni R, Deri P, Pugliesi C, Loreti E, Gremigni V (2006) DjPiwi-1, a member of the PAZ-Piwi gene family, defines a subpopulation of planarian stem cells. Dev Genes Evol 216(6):335–346. https://doi.org/10.1007/s00427-006-0060-0

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Shibata N, Orii H, Amikura R, Sakurai T, Agata K, Kobayashi S, Watanabe K (2006) Identification and origin of the germline stem cells as revealed by the expression of nanos-related gene in planarians. Develop Growth Differ 48(9):615–628. https://doi.org/10.1111/j.1440-169X.2006.00897.x

    Article  CAS  Google Scholar 

  • Sawada N (1975) Electron microscope study on sperm differentiation in marine annelid worms. II. Sperm differentiation in Arenicola brasiliensis. Develop Growth Differ 17:89–99

    Article  Google Scholar 

  • Schmelz RM, Collado R, Myohara M (2000) A taxonomic study of Enchytraeus japonensis (Enchytraeidae, Oligochaeta): morphological and biochemical comparisons with E. bigeminus. Zool Sci 17:505–516

    Google Scholar 

  • Schneider SQ, Bowerman B (2007) beta-Catenin asymmetries after all animal/vegetal- oriented cell divisions in Platynereis dumerilii embryos mediate binary cell-fate specification. Dev Cell 13(1):73–86. https://doi.org/10.1016/j.devcel.2007.05.002

    Article  PubMed  CAS  Google Scholar 

  • Seipel K, Yanze N, Schmid V (2004) The germ line and somatic stem cell gene Cniwi in the jellyfish Podocoryne carnea. Int J Dev Biol 48(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Shankland M, Savage RM (1997) Annelids, the segmented worms. In: Gilbert SF, Raunio AM (eds) Embryology: constructing the organisms. Sinauer, Sunderland

    Google Scholar 

  • Shibata N, Umesono Y, Orii H, Sakurai T, Watanabe K, Agata K (1999) Expression of vasa(vas)-related genes in germline cells and totipotent somatic stem cells of planarians. Dev Biol 206(1):73–87. https://doi.org/10.1006/dbio.1998.9130

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T (1980) Development in the freshwater oligochaete tubifex. Developmental biology of freshwater invertebrates. Alan R Liss, New York

    Google Scholar 

  • Stephenson J (1930) The Oligochaeta. Clarendon Press, Oxford

    Google Scholar 

  • Sugio M, Takeuchi K, Kutsuna J, Tadokoro R, Takahashi Y, Yoshida-Noro C, Tochinai S (2008) Exploration of embryonic origins of germline stem cells and neoblasts in Enchytraeus japonensis (Oligochaeta, Annelida). Gene Expr Patterns GEP 8(4):227–236. https://doi.org/10.1016/j.gep.2007.12.008

    Article  PubMed  CAS  Google Scholar 

  • Sugio M, Yoshida-Noro C, Ozawa K, Tochinai S (2012) Stem cells in asexual reproduction of Enchytraeus japonensis (Oligochaeta, Annelid): proliferation and migration of neoblasts. Develop Growth Differ 54(4):439–450. https://doi.org/10.1111/j.1440-169X.2012.01328.x

    Article  Google Scholar 

  • Tadokoro R (2009) Germ cell regeneration of Enchytraeus japonensis. Saishinigaku 93:81–93

    Google Scholar 

  • Tadokoro R, Sugio M, Kutsuna J, Tochinai S, Takahashi Y (2006) Early segregation of germ and somatic lineages during gonadal regeneration in the annelid Enchytraeus japonensis. Curr Biol 16(10):1012–1017. https://doi.org/10.1016/j.cub.2006.04.036

    Article  PubMed  CAS  Google Scholar 

  • Takeo M, Yoshida-Noro C, Tochinai S (2008) Morphallactic regeneration as revealed by region-specific gene expression in the digestive tract of Enchytraeus japonensis (Oligochaeta, Annelida). Dev Dyn Off Publ Am Assoc Anatomists 237(5):1284–1294. https://doi.org/10.1002/dvdy.21518

    Article  CAS  Google Scholar 

  • Tsuda M, Sasaoka Y, Kiso M, Abe K, Haraguchi S, Kobayashi S, Saga Y (2003) Conserved role of nanos proteins in germ cell development. Science (New York, NY) 301(5637):1239–1241. https://doi.org/10.1126/science.1085222

    Article  CAS  Google Scholar 

  • Tweeten KA, Reiner A (2012) Characterization of serine proteases of Lumbriculus variegatus and their role in regeneration. Invertebr Biol 131:322–332

    Article  Google Scholar 

  • Vannini E (1947) Neoblasti e rigenerazione dei segmenti genitali nel serpulide ermafrodita Salmacina incrustans., vol 1st

    Google Scholar 

  • Weisblat DA, Harper G, Stent GS, Sawyer RT (1980) Embryonic cell lineages in the nervous system of the glossiphoniid leech Helobdella triserialis. Dev Biol 76(1):58–78

    Article  CAS  PubMed  Google Scholar 

  • Yoon C, Kawakami K, Hopkins N (1997) Zebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cells. Development 124(16):3157–3165

    PubMed  CAS  Google Scholar 

  • Yoshida-Noro C, Tochinai S (2010) Stem cell system in asexual and sexual reproduction of Enchytraeus japonensis (Oligochaeta, Annelida). Develop Growth Differ 52(1):43–55. https://doi.org/10.1111/j.1440-169X.2009.01149.x

    Article  CAS  Google Scholar 

  • Yoshida-Noro C, Myohara M, Kobari F, Tochinai S (2000) Nervous system dynamics during fragmentation and regeneration in Enchytraeus japonensis (Oligochaeta, Annelida). Dev Genes Evol 210(6):311–319. https://doi.org/10.1007/s004270050318

    Article  PubMed  CAS  Google Scholar 

  • Zantke J, Bannister S, Rajan VB, Raible F, Tessmar-Raible K (2014) Genetic and genomic tools for the marine annelid Platynereis dumerilii. Genetics 197(1):19–31. https://doi.org/10.1534/genetics.112.148254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgement

We would like to thank Editage (www.editage.jp) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryosuke Tadokoro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Japan KK, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tadokoro, R. (2018). Reproductive Strategies in Annelida: Germ Cell Formation and Regeneration. In: Kobayashi, K., Kitano, T., Iwao, Y., Kondo, M. (eds) Reproductive and Developmental Strategies. Diversity and Commonality in Animals. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56609-0_10

Download citation

Publish with us

Policies and ethics