Skip to main content

CNVs and Microsatellite DNA Polymorphism

  • Chapter
  • First Online:
Evolution of the Human Genome I

Part of the book series: Evolutionary Studies ((EVOLUS))

Abstract

Microsatellite DNAs are short tandem repeats (often abbreviated as STR) of nucleotides (1–6 bp) and abundant in eukaryotic genomes. Microsatellites are used as genetic markers for population studies and forensics because of the high mutation rate. Recently, copy number variations (CNVs) of DNA segments of a kilobase to a few megabases are found to be prevalent and cover about 10% of the human genome. This chapter describes (1) the mutational pattern of microsatellites and the application for evolutionary studies of populations, (2) the distribution of CNVs in human genome and its relationship with multigene families of chemosensory receptor genes, and (3) the evolutionary pattern of microsatellites and CNVs and their effects on genome size variation in human populations by taking microsatellites as a neutral model of CNV evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alexander RP, Fang G, Rozowsky J, Snyder M, Gerstein M (2010) Annotating non-coding regions of the genome. Nat Rev Genet 11:559–571

    Google Scholar 

  • Ananda G, Walsh E, Jacob KD, Krasilnikova M, Eckert KA, Chiaromonte F, Makova KD (2013) Distinct mutational behaviors differentiate short tandem repeats from microsatellites in the human genome. Genome Biol Evol 5:606–620

    Google Scholar 

  • Baptiste BA, Guruprasad A, Strubczewski N, Lutzkanin A, Khoo SJ et al (2013) Mature microsatellites: mechanisms underlying dinucleotide microsatellite mutational biases in human cells. G3 3:451–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368:455–457

    Article  CAS  PubMed  Google Scholar 

  • Calabrese P, Durrett R (2003) Dinucleotide repeats in the Drosophila and human genomes have complex, length-dependent mutation processes. Mol Biol Evol 20:715–725

    Article  CAS  PubMed  Google Scholar 

  • Cann RL, Stoneking M, Wilson AC (1987) Mitochondrial DNA and human evolution. Nature 325:31–36

    Article  CAS  PubMed  Google Scholar 

  • Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Am J Hum Genet 19:233–257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty R, Kimmel M, Stivers DN, Davidson LJ, Deka R (1997) Relative mutation rates at di-, tri-, and tetranucleotide microsatellite loci. Proc Natl Acad Sci U S A 94:1041–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakrabory R, Nei M (1982) Genetic differentiation of quantitative characters between populations or species. Genet Res 39:303–314

    Article  Google Scholar 

  • Conrad DF, Bird C, Blackburne B, Lindsay S, Mamanova L, Lee C et al (2010) Mutation spectrum revealed by breakpoint sequencing of human germline CNVs. Nat Genet 42:385–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci U S A 91:3166–3170

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellegren H (2000) Heterogeneous mutation processes in human microsatellite DNA sequences. Nat Genet 24:400–402

    Article  CAS  PubMed  Google Scholar 

  • Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445

    Article  CAS  PubMed  Google Scholar 

  • Fanciulli M, Norsworthy PJ, Petretto E, Dong R, Harper L, Kamesh L et al (2007) FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity. Nat Genet 39:721–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feuk L, Carson AR, Schere SW (2006) Structural variation in the human genome. Nat Rev Genet 7:85–97

    Article  CAS  PubMed  Google Scholar 

  • Freeman JL, Perry GH, Feuk L, Redon R, McCarroll SA, Altshuler DM, Aburatani H, Jones KW et al (2006) Copy number variation: new insights in genome diversity. Genome Res 16:949–961

    Google Scholar 

  • Garza JC, Slatkin M, Freimer NB (1995) Microsatellite allele frequencies in humans and chimpanzees, with implications for constraints on allele size. Mol Biol Evol 12:594–603

    CAS  PubMed  Google Scholar 

  • Goldstein DB, Linares AR, Cavalli-Sforza LL, Feldman MW (1995) Genetic absolute dating based on microsatellites and the origin of modern humans. Proc Natl Acad Sci U S A 92:6723–6727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638

    Article  CAS  PubMed  Google Scholar 

  • Huang Q, Xu FH, Shen H, Deng Y, Liu J et al (2002) Mutation patterns at dinucleotide microsatellite loci in humans. Am J Hum Genet 70:625–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubbard TJP, Aken BL, Beal K, Ballester B, Caccamo M, Chen Y, Clarke L, Coates G et al (2007) Ensembl 2007. Nucleic Acids Res 35:D610–D617

    Article  CAS  PubMed  Google Scholar 

  • International Hap Map Consortium (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–862

    Article  Google Scholar 

  • International HapMap 3 Consortium (2010) Integrating common and rare genetic variation in diverse human populations. Nature 467:52–58

    Article  Google Scholar 

  • International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  Google Scholar 

  • Jost L (2008) G ST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026

    Article  PubMed  Google Scholar 

  • Kelkar YD, Tyekucheva S, Chiaromonte F, Makova KD (2008) The genome-wide determinants of human and chimpanzee microsatellite evolution. Genome Res 18:30–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimmel M, Chakraborty R, Silvers DN, Deka R (1996) Dynamics of repeat polymorphisms under a forward-backward mutation model: within- and between-population variability at microsatellite loci. Genetics 143:549–555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura M, Crow JF (1964) The numbers of alleles that can be maintained in a finite population. Genetics 49:523–538

    Google Scholar 

  • Kruglyak S, Durrett RT, Schug MD, Aquadro C (1998) Equilibrium distributions of microsatellite repeat length resulting from a balance slippage events and point mutations. Proc Natl Acad Sci U S A 95:10774–10778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai Y, Sun F (2003) The relationship between microsatellite slippage mutation rate and the number of repeat units. Mol Biol Evol 20:2123–2131

    Article  CAS  PubMed  Google Scholar 

  • Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP, Axelrod N et al (2007) The diploid genome sequence of an individual human. PLoS One 5:e254

    Article  Google Scholar 

  • Meirmans PG, Hedrick PW (2011) Assessing population structure: FST and related measures. Mol Ecol Resour 11:5–18

    Article  PubMed  Google Scholar 

  • Messier W, Li SH, Stewart CB (1996) The birth of microsatellites. Nature 381:481–483

    Article  Google Scholar 

  • Moreno-Estrada A, Casals F, Ramirez-Soriano A, Oliva V, Calafell F, Bertranpetit J, Bosch E (2008) Signatures of selection in human olfactory receptor OR511 gene. Mol Biol Evol 25:144–154

    Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:283–292

    Article  Google Scholar 

  • Nei M (1977) F-statistics and analysis of gene diversity in subdivided populations. Ann Hum Genet 41:225–233

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, Oxford

    Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J Mol Evol 19:153–170

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Niimura Y, Nozawa M (2008) The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nat Rev Genet 9:951–963

    Article  CAS  PubMed  Google Scholar 

  • Nozawa M, Kawahara Y, Nei M (2007) Genomic drift and copy number variation of sensory receptor genes in humans. Proc Natl Acad Sci U S A 104:20421–20426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta T, Kimura M (1973) A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet Res 22:201–204

    Article  CAS  PubMed  Google Scholar 

  • Pearson CE, Edamura KN, Cleary JD (2005) Repeat instability; mechanisms of dynamic mutations. Nat Rev Genet 6:729–742

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran S, Deshpande O, Roseman CC, Rosenberg NA, Feldman MW, Cavalli-Sforza LL (2005) Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. Proc Natl Acad Sci U S A 102:15942–15947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD et al (2006) Global variation in copy number in the human genome. Nature 444:444–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose O, Falush D (1998) A threshold size for microsatellite expansion. Mol Biol Evol 15:613–615

    Article  CAS  PubMed  Google Scholar 

  • Sainudiin R, Durrett RT, Aquadro CF, Nielsen R (2004) Microsatellite mutation models: insights from a comparison of humans and chimpanzees. Genetics 168:383–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schlötterer C (2000) Evolutionary dynamics of microsatellite DNA. Chromosoma 109:365–371

    Article  PubMed  Google Scholar 

  • Shriver MD, Jin L, Chakraborty R, Boerwinkle E (1993) VNTR allele frequency distributions under the stepwise mutation model: a computer simulation approach. Genetics 134:983–993

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sideris M, Papagrigoriadis S (2014) Molecular biomarkers and classification models in the evaluation of the prognosis of colorectal cancer. Anticancer Res 34:2061–2068

    CAS  PubMed  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. W. H. Freeman, San Francisco

    Google Scholar 

  • Sun JX, Helgason A, Masson G, Ebenesersdottir LH, Mallick S, Gnerre S, Patterson N, Kong A, Reich D, Stefansson (2012) A direct characterization of human mutation based on microsatellites. Nat Genet 44:1161–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takezaki N, Nei M (1996) Genetic distance and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144:385–392

    Google Scholar 

  • Takezaki N, Nei M (2008) Empirical tests of the reliability of phylogenetic trees constructed with microsatellite DNA. Genetics 178:1835–1840

    Article  Google Scholar 

  • Takezaki N, Nei M (2009) Genomic drift and evolution of microsatellite DNAs in human populations. Mol Biol Evol 26:1835–1840

    Article  CAS  PubMed  Google Scholar 

  • Toth G, Gaspari Z, Jurka J (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 10:967–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuzun E, Sharp AJ, Bailey JA, Kaul R, Morrison VA, Pertz LM et al (2005) Fine-scale structural variation of the human genome. Nat Genet 37:727–732

    Article  CAS  PubMed  Google Scholar 

  • Valdes AM, Slatkin M, Freimer N (1993) Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics 133:737–749

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whittaker JC, Harbord RM, Boxall N, Mackay I, Dawson et al (2003) Likelihood-based estimation of microsatellite mutation rates. Genetics 164:781–787

    PubMed  PubMed Central  Google Scholar 

  • Wong KK, deLeeuw RJ, Dosanjh NS, Kimm LR, Cheng Z, Horsman DE et al (2007) A comprehensive analysis of common copy-number variations in the human genome. Am J Hum Genet 80:91–104

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Peng M, Fang Z, Xu X (2000) The direction of microsatellite mutation is dependent upon allele length. Nat Genet 24:396–399

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoko Takezaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Takezaki, N. (2017). CNVs and Microsatellite DNA Polymorphism. In: Saitou, N. (eds) Evolution of the Human Genome I. Evolutionary Studies. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56603-8_7

Download citation

Publish with us

Policies and ethics