Transcription Factor Genes

  • Mahoko Ueda Takahashi
  • So Nakagawa
Part of the Evolutionary Studies book series (EVOLUS)


Transcription factor (TF) genes encode DNA-binding proteins. In all organisms, TFs play central roles in transcription by regulating gene expression. TFs are involved in a variety of biological processes, such as development and cell cycle control. TFs comprise one of the largest known groups of genes. In the human genome, approximately 8% of genes encode TFs. Many TFs involved in developmental processes are well conserved among a wide range of species. This conservation indicates that alterations in TF function are a likely source of phenotypic diversity among species. In addition, numerous human diseases are known to arise from mutations that dysregulate the regulatory system. For example, more than 30% of human developmental disorders are caused by mutations in TFs (Boyadjiev and Jabs, Clin Genet 57:253–266, 2000). Therefore, the structures of TFs and the mechanisms regulating gene expression are areas of great interest in the fields of evolutionary studies and biomedicine. In this chapter, we review the basic concepts of TF structures and the biological processes through which TFs control gene expression by binding target sequences. We will additionally introduce the evolutionary patterns of TF gene families. We will further discuss the results of recent studies that have used new techniques, such as chromatin immunoprecipitation sequencing (ChIP-seq) and network motifs.


DNA-binding domain Zinc finger Homeodomain Helix-loop-helix Forkhead box genes T-box genes Whole-genome duplication 


  1. Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8:450–461PubMedCrossRefGoogle Scholar
  2. Atchley WR, Fitch WM (1997) A natural classification of the basic helix-loop-helix class of transcription factors. Proc Natl Acad Sci U S A 94:5172–5176PubMedPubMedCentralCrossRefGoogle Scholar
  3. Atchley WR, Terhalle W, Dress A (1999) Positional dependence, cliques, and predictive motifs in the bHLH protein domain. J Mol Evol 48:501–516PubMedCrossRefGoogle Scholar
  4. Badis G, Berger MF, Philippakis AA, Talukder S, Gehrke AR et al (2009) Diversity and complexity in DNA recognition by transcription factors. Science 324:1720–1723PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34:W369–W373PubMedPubMedCentralCrossRefGoogle Scholar
  6. Baldini (2003) DiGeorge’s syndrome: a gene at last. Lancet 362:1342–1343PubMedCrossRefGoogle Scholar
  7. Bamshad M, Lin RC, Law DJ, Watkins WC, Krakowiak PA et al (1997) Mutations in human TBX3 alter limb, apocrine and genital development in ulnar-mammary syndrome. Nat Genet 16:311–315PubMedCrossRefGoogle Scholar
  8. Banerjee-Basu S, Baxevanis AD (2001) Molecular evolution of the homeodomain family of transcription factors. Nucleic Acids Res 29:3258–3269PubMedPubMedCentralCrossRefGoogle Scholar
  9. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837PubMedCrossRefGoogle Scholar
  10. Basson CT, Bachinsky DR, Lin RC, Levi T, Elkins JA et al (1997) Mutations in human TBX5 cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet 15:30–35PubMedCrossRefGoogle Scholar
  11. Benayoun BA, Caburet S, Veitia RA (2011) Forkhead transcription factors: key players in health and disease. Trends Genet 27:224–232PubMedCrossRefGoogle Scholar
  12. Bohm S, Frishman D, Mewes HW (1997) Variations of the C2H2 zinc finger motif in the yeast genome and classification of yeast zinc finger proteins. Nucleic Acids Res 25:2464–2469PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bongers EM, Duijf PH, van Beersum SE, Schoots J, van Kampen A et al (2004) Mutations in the human TBX4 gene cause small patella syndrome. Am J Hum Genet 74:1239–1248PubMedPubMedCentralCrossRefGoogle Scholar
  14. Boyadjiev SA, Jabs EW (2000) Online Mendelian Inheritance in Man (OMIM) as a knowledgebase for human developmental disorders. Clin Genet 57:253–266PubMedCrossRefGoogle Scholar
  15. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS et al (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–956PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bradley RK, Li XY, Trapnell C, Davidson S, Pachter L et al (2010) Binding site turnover produces pervasive quantitative changes in transcription factor binding between closely related Drosophila species. PLoS Biol 8:e1000343PubMedPubMedCentralCrossRefGoogle Scholar
  17. Braybrook C, Doudney K, Marçano AC, Arnason A, Bjornsson A et al (2001) The T-box transcription factor gene TBX22 is mutated in X-linked cleft palate and ankyloglossia. Nat Genet 29:179–183PubMedCrossRefGoogle Scholar
  18. Burglin T (1994) Comprehensive classification of homeobox genes. In: Duboule D (ed) Guidebook to the homeobox genes. Oxford University Press, OxfordGoogle Scholar
  19. Carroll SB, Grenier JK, Weatherbee SD (2004) From DNA to diversity: molecular genetics and the evolution of animal design, 2nd edn. Wiley-Blackwell, NJGoogle Scholar
  20. Casey ES, O’Reilly MA, Conlon FL, Smith JC (1998) The T-box transcription factor Brachyury regulates expression of eFGF through binding to a non-palindromic response element. Development 125:3887–3894PubMedGoogle Scholar
  21. Chen L, Xiao S, Manley NR (2009) Foxn1 is required to maintain the postnatal thymic microenvironment in a dosage-sensitive manner. Blood 113:567–574PubMedPubMedCentralCrossRefGoogle Scholar
  22. Clark KL, Halay ED, Lai E, Burley SK (1993) Co-crystal structure of the HNF-3/fork head DNA- recognition motif resembles histone H5. Nature 364:412–420PubMedCrossRefGoogle Scholar
  23. Clarke B (1998) Zinc finger in Caenorhabditis elegans: finding families and probing pathways. Science 282:2018–2022PubMedCrossRefGoogle Scholar
  24. Coolican SA, Samuel DS, Ewton DZ, McWade FJ, Florini JR (1997) The mitogenic and myogenic actions of insulin-like growth factors utilize distinct signaling pathways. J Biol Chem 272:6653–6662PubMedCrossRefGoogle Scholar
  25. de Mendoza A, Sebé-Pedrós A, Sestak MS, Matejcic M, Torruella G et al (2013) Transcription factor evolution in eukaryotes and the assembly of the regulatory toolkit in multicellular lineages. Proc Natl Acad Sci U S A 110:E4858–E4866PubMedPubMedCentralCrossRefGoogle Scholar
  26. Demuth JP, Hahn MW (2009) The life and death of gene families. BioEssays 31:29–39PubMedCrossRefGoogle Scholar
  27. Dobrovolskaïa-Zavadskaïa N (1927) Sur la mortification spontanée de la queue chez la souris noveau-née et sur l’existence d’un caractère (facteur) héréditaire “non-viable”. C. R. Seanc. Soc Biol 97:114–116Google Scholar
  28. Eichenberger P, Fujita M, Jensen ST, Conlon EM, Rudner DZ et al (2004) The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS Biol 2:e328PubMedPubMedCentralCrossRefGoogle Scholar
  29. Ellenberger T, Fass D, Arnaud M, Harrison SC (1994) Crystal structure of transcription factor E47: E-box recognition by a basic region helix-loop-helix dimer. Genes Dev 8:970–980PubMedCrossRefGoogle Scholar
  30. Elrod-Erickson M, Pabo CO (1999) Binding studies with mutants of Zif268. J Biol Chem 274:19381–19285CrossRefGoogle Scholar
  31. Enard W, Przeworski M, Fisher SE, Lai CS, Wiebe V et al (2002) Molecular evolution of FOXP2, a gene involved in speech and language. Nature 418:869–872PubMedCrossRefGoogle Scholar
  32. Fernando RI, Litzinger M, Trono P, Hamilton DH, Schlom J, Palena C (2010) The T-box transcription factor Brachyury promotes epithelial-mesenchymal transition in human tumor cells. J Clin Invest 120:533–544PubMedPubMedCentralCrossRefGoogle Scholar
  33. Ferre-D’Amare AR, Prendergast GC, Ziff EB, Burley SK (1993) Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 363:38–45PubMedCrossRefGoogle Scholar
  34. Fisher SE, Vargha-Khadem F, Watkins KE, Monaco AP, Pembrey ME (1998) Localisation of a gene implicated in a severe speech and language disorder. Nat Genet 18:168–170PubMedCrossRefGoogle Scholar
  35. Frankel AD, Berg JM, Pabo CO (1987) Metal-dependent folding of a single zinc finger from transcription factor IIIA. Proc Natl Acad Sci U S A 84:4841–4845PubMedPubMedCentralCrossRefGoogle Scholar
  36. Friedman JR, Kaestner KH (2006) The Foxa family of transcription factors in development and metabolism. Cell Mol Life Sci 63:2317–2328PubMedCrossRefGoogle Scholar
  37. Gehring WJ, Qian YQ, Billeter M, Furukubo-Tokunaga K, Schier AF et al (1994) Homeodomain-DNA recognition. Cell 78:211–223PubMedCrossRefGoogle Scholar
  38. Gerstein MB, Kundaje A, Hariharan M, Landt SG, Yan KK et al (2012) Architecture of the human regulatory network derived from ENCODE data. Nature 489:91–100PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gross DN, Wan M, Birnbaum MJ (2009) The role of FOXO in the regulation of metabolism. Curr Diab Rep 9:208–214PubMedCrossRefGoogle Scholar
  40. He Q, Bardet AF, Patton B, Purvis J, Johnston J et al (2011) High conservation of transcription factor binding and evidence for combinatorial regulation across six Drosophila species. Nat Genet 43:414–420PubMedCrossRefGoogle Scholar
  41. Herrmann BG, Labeit S, Poustka A, King TR, Lehrach H (1990) Cloning of the T gene required in mesoderm formation in the mouse. Nature 343:617–622PubMedCrossRefGoogle Scholar
  42. Holland LZ, Albalat R, Azumi K, Benito-Gutierrez E, Blow M et al (2008) The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Res 18:1100–1111PubMedPubMedCentralCrossRefGoogle Scholar
  43. Iranfar N, Fuller D, Loomis WF (2006) Transcriptional regulation of post-aggregation genes in Dictyostelium by a feed-forward loop involving GBF and LagC. Dev Biol 290:460–469PubMedCrossRefGoogle Scholar
  44. Isaacs FJ, Hasty J, Cantor CR, Collins JJ (2003) Prediction and measurement of an autoregulatory genetic module. Proc Natl Acad Sci U S A 100:7714–7719PubMedPubMedCentralCrossRefGoogle Scholar
  45. Iuchi S (2000) Three classes of C2H2 zinc finger proteins. CMLS (Cell Mol Life Sci) 58:625–635CrossRefGoogle Scholar
  46. Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316:1497–1502PubMedCrossRefGoogle Scholar
  47. Kadesch T (1993) Consequences of heteromeric interactions among helix-loop-helix proteins. Cell Growth Differ 4:49–55PubMedGoogle Scholar
  48. Kaestner KH, Knochel W, Martinez DE (2000) Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev 14:42–146Google Scholar
  49. Kaufmann E, Müller D, Knöchel W (1995) DNA recognition site analysis of Xenopus winged helix proteins. J Mol Biol 248:239–254PubMedGoogle Scholar
  50. Kim PM, Korbel JO, Gerstein MB (2007) Positive selection at the protein network periphery: evaluation in terms of structural constraints and cellular context. Proc Natl Acad Sci U S A 104:20274–20279PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kirk EP, Sunde M, Costa MW, Rankin SA, Wolstein O et al (2007) Mutations in cardiac T-Box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy. Am J Hum Genet 81:280–291PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kissinger CR, Liu B, Martin-Blanco E, Kornberg TB, Pabo CO (1990) Crystal structure of an engrailed homeodomain-DNA complex at 2.8 A resolution: a framework for understanding homeodomain-DNA interactions. Cell 63:579–590PubMedCrossRefGoogle Scholar
  53. Kitamura T, Nakae J, Kitamura Y, Kido Y, Biggs WH 3rd et al (2002) The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic β cell growth. J Clin Invest 110:1839–1847PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kunarso G, Chia NY, Jeyakani J, Hwang C, Lu X et al (2010) Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nature Genet 42:631–634PubMedCrossRefGoogle Scholar
  55. Lai CS, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP (2001) A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 413:519–523PubMedCrossRefGoogle Scholar
  56. Lander ES, Linton M, Birren B (2001) Innitial sequencing and analysis of the human genome. Nature 409:809–921CrossRefGoogle Scholar
  57. LaRonde-LeBlanc NA, Wolberger C (2003) Structure of HoxA9 and Pbx1 bound to DNA: Hox hexapeptide and DNA recognition anterior to posterior. Genes Dev 17:2060–2072PubMedPubMedCentralCrossRefGoogle Scholar
  58. Larroux C, Luke GN, Koopman P, Rokhsar DS, Shimeld SM et al (2008) Genesis and expansion of metazoan transcription factor gene classes. Mol Biol Evol 25:980–996PubMedCrossRefGoogle Scholar
  59. Lausch E, Hermanns P, Farin HF, Alanay Y, Unger S et al (2008) TBX15 mutations cause craniofacial dysmorphism, hypoplasia of scapula and pelvis, and short stature in cousin syndrome. Am J Hum Genet 83:649–655PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z et al (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298:799–804PubMedCrossRefGoogle Scholar
  61. Levine M, Tjian R (2003) Transcription regulation and animal diversity. Nature 424:147–151PubMedCrossRefGoogle Scholar
  62. Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276:565–570PubMedCrossRefGoogle Scholar
  63. Lieb JD (2003) Genome-wide mapping of protein-DNA interactions by chromatin immunoprecipitation and DNA microarray hybridization. Methods Mol Biol 224:99–109PubMedGoogle Scholar
  64. Loh YH, Wu Q, Chew JL, Vega VB, Zhang W et al (2006) The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genet 38:431–440PubMedCrossRefGoogle Scholar
  65. Loots GG, Ovcharenko I, Pachter L, Dubchak I, Rubin EM (2002) rVista for comparative sequence-based discovery of functional transcription factor binding sites. Genome Res 12:832–839PubMedPubMedCentralCrossRefGoogle Scholar
  66. Mangan S, Zaslaver A, Alon U (2003) The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks. J Mol Biol 334:197–204PubMedCrossRefGoogle Scholar
  67. Mardis ER (2007) ChIP-seq: welcome to the new frontier. Nat Methods 4:613–614PubMedCrossRefGoogle Scholar
  68. Martin D, Pantoja C, Miñán AF, Valdes-Quezada C, Moltó E et al (2011) Genome-wide CTCF distribution in vertebrates defines equivalent sites that aid the identification of disease-associated genes. Nat Struct Mol Biol 18:708–714PubMedPubMedCentralCrossRefGoogle Scholar
  69. McLysaght A, Hokamp K, Wolfe KH (2002) Extensive genomic duplication during early chordate evolution. Nat Genet 31:200–204PubMedCrossRefGoogle Scholar
  70. Medema RH, Kops GJ, Bos JL, Burgering BM (2000) AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404:782–787PubMedCrossRefGoogle Scholar
  71. Miller J, McLachlan AB, Klug A (1985) Repetitive zinc- binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 4:1609–1614PubMedPubMedCentralGoogle Scholar
  72. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D et al (2002) Network motifs: simple building blocks of complex networks. Science 298:824–827PubMedCrossRefGoogle Scholar
  73. Moore MJ (2005) From birth to death: the complex lives of eukaryotic mRNAs. Science 309:1514–1518PubMedCrossRefGoogle Scholar
  74. Mukherjee K, Burglin TR (2007) Comprehensive analysis of animal TALE Homeobox genes: new conserved motifs and cases of accelerated evolution. J Mol Evol 65:137–153PubMedCrossRefGoogle Scholar
  75. Murre C, Mc Caw PS, Baltimore D (1989a) A new DNA binding and dimerizing motif in immunoglobulin enhancer binding, daughterless, MyoD, and Myc proteins. Cell 56:777–783PubMedCrossRefGoogle Scholar
  76. Murre C, Mc Caw PS, Vaessin H, Caudy M, Jan LY et al (1989b) Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58:537–544PubMedCrossRefGoogle Scholar
  77. Murre C, Bain G, van Dijk MA, Engel I, Furnari BA et al (1994) Structure and function of helix-loop-helix proteins. Biochim Biophys Acta 1218:129–135PubMedCrossRefGoogle Scholar
  78. Naiche LA, Harrelson Z, Kelly RG, Papaioannou VE (2005) T-box genes in vertebrate development. Annu Rev Genet 39:219–239PubMedCrossRefGoogle Scholar
  79. Nair S, Boczkowski D, Fassnacht M, Pisetsky D, Gilboa E (2007) Vaccination against the forkhead family transcription factor Foxp3 enhances tumor immunity. Cancer Res 67:371–380PubMedCrossRefGoogle Scholar
  80. Nakae J, Biggs WH 3rd, Kitamura T, Cavenee WK, Wright CV et al (2002) Regulation of insulin action and pancreatic beta-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1. Nat Genet 32:245–253PubMedCrossRefGoogle Scholar
  81. Nakagawa S, Gisselbrecht SS, Rogers JM, Hartl DL, Bulyk ML (2013) DNA-binding specificity changes in the evolution of forkhead transcription factors. Proc Natl Acad Sci U S A 110:12349–12354PubMedPubMedCentralCrossRefGoogle Scholar
  82. Neph S, Stergachis AB, Reynolds A, Sandstrom R, Borenstein E (2012) Circuitry and dynamics of human transcription factor regulatory networks. Cell 150:1274–1286PubMedPubMedCentralCrossRefGoogle Scholar
  83. Ni X, Zhang YE, Nègre N, Chen S, Long M et al (2012) Adaptive evolution and the birth of CTCF binding sites in the Drosophila genome. PLoS Biol 10:e1001420PubMedPubMedCentralCrossRefGoogle Scholar
  84. Nowick K, Huntley S, Stubbs L (2009) Rapid expansion and divergence suggest a central and distinct role for KRAB-ZNF genes in vertebrate evolution. In: Yoshida K (ed) Focus on zinc finger protein research. Research Signpost, Kerala, pp 13–29Google Scholar
  85. Nowick K, Stubbs L (2010) Lineage-specific transcription factors and the evolution of gene regulatory networks. Brief Funct Genomics 9:65–78Google Scholar
  86. Odom DT, Dowell RD, Jacobsen ES, Gordon W, Danford TW et al (2007) Tissue-specific transcriptional regulation has diverged significantly between human and mouse. Nat Genet 39:730–732PubMedPubMedCentralCrossRefGoogle Scholar
  87. Ohno S (1970) Evolution by gene duplication. Springer-Verlag, New YorkCrossRefGoogle Scholar
  88. Overdier DG, Porcella A, Costa RH (1994) The DNA-binding specificity of the hepatocyte nuclear factor 3/forkhead domain is influenced by amino-acid residues adjacent to the recognition helix. Mol Cell Biol 14:2755–2766PubMedPubMedCentralCrossRefGoogle Scholar
  89. Paris M, Kaplan T, Li XY, Villalta JE, Lott SE et al (2013) Extensive divergence of transcription factor binding in Drosophila embryos with highly conserved gene expression. PLoS Genet 9:e1003748PubMedPubMedCentralCrossRefGoogle Scholar
  90. Parnell GP, Gatt PN, Krupa M, Nickles D, McKay FC et al (2014) The autoimmune disease-associated transcription factors EOMES and TBX21 are dysregulated in multiple sclerosis and define a molecular subtype of disease. Clin Immunol 151:16–24PubMedCrossRefGoogle Scholar
  91. Pascual-Anaya J, Aniello SD, Kuratani S, Garcia-Fernàndez J (2013) Evolution of Hox gene clusters in deuterostomes. BMC Dev Biol 13:26PubMedPubMedCentralCrossRefGoogle Scholar
  92. Patsopoulos NA, The Bayer Pharma MS Genetics Working Group, the Steering Committees of Studies Evaluating IFNβ-1b and a CCR1-Antagonist, ANZgene Consortium, GeneMSA et al (2011) Genome-wide meta-analysis identifies novel multiple sclerosis susceptibility loci. Ann Neurol 70:897–912PubMedPubMedCentralCrossRefGoogle Scholar
  93. Pavletich N, Pabo CO (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complec at 2.1 Å. Science 252:809–817PubMedCrossRefGoogle Scholar
  94. Pierrou S, Hellqvist M, Samuelsson L, Enerbäck S, Carlsson P (1994) Cloning and characterization of seven human forkhead proteins: binding site specificity and DNA bending. EMBO J 13:5002–5012PubMedPubMedCentralGoogle Scholar
  95. Piper DE, Batchelor AH, Chang C-P, Cleary ML, Wolberger C (1999) Structure of a HoxB1-Pbx1 heterodimer bound to DNA: role of the hexapeptide and a fourth homeodomain helix in complex formation. Cell 96:587–597PubMedCrossRefGoogle Scholar
  96. Pulichino AM, Vallette-Kasic S, Couture C, Gauthier Y, Brue T et al (2003) Human and mouse TPIT gene mutations cause early onset pituitary ACTH deficiency. Genes Dev 17:711–716PubMedPubMedCentralCrossRefGoogle Scholar
  97. Putnam NH, Butts T, Ferrier DEK, Furlong RF, Hellsten U et al (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453:1064–1071PubMedCrossRefGoogle Scholar
  98. Qian YQ, Billeter M, Otting G, Muller M, Gehring WJ, Wuthrich K (1989) The structure of the Antennapedia homeodomain determined by NMR spectroscopy in solution: comparison with prokaryotic repressors. Cell 59:573–580PubMedCrossRefGoogle Scholar
  99. Radhakrishnan SK, Bhat UG, Hughes DE, Wang IC, Costa RH et al (2006) Identification of a chemical inhibitor of the oncogenic transcription factor forkhead box m1. Cancer Res 66:9731–9735PubMedCrossRefGoogle Scholar
  100. Robertson G et al (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4:651–657PubMedCrossRefGoogle Scholar
  101. Rosenfeld N, Elowitz MB, Alon U (2002) Negative autoregulation speeds the response times of transcription networks. J Mol Biol 323:785–793Google Scholar
  102. Saddic LA, Huvermann B, Bezhani S, Su Y, Winter CM et al (2006) The LEAFY target LMI1 is a meristem identity regulator and acts together with LEAFY to regulate expression of CAULIFLOWER. Development 133:1673–1682PubMedCrossRefGoogle Scholar
  103. Sagai T, Hosoya M, Mizushina Y, Tamura M, Shiroishi T (2005) Elimination of a long-range cis-regulatory module causes complete loss of limb-specific Shh expression and truncation of the mouse limb. Development 132:797–803PubMedCrossRefGoogle Scholar
  104. Sandelin A, Wasserman WW, Lenhard B (2004) ConSite: web-based prediction of regulatory elements using cross-species comparison. Nucleic Acids Res 32:W249–W252PubMedPubMedCentralCrossRefGoogle Scholar
  105. Schmidt D, Wilson MD, Ballester B, Schwalie PC, Brown GD et al (2010) Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding. Science 328:1036–1040PubMedPubMedCentralCrossRefGoogle Scholar
  106. Sebé-Pedrós A, de Mendoza A, Lang BF, Degnan BM, Ruiz-Trillo I (2011) Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki. Mol Biol Evol 28:1241–1254PubMedCrossRefGoogle Scholar
  107. Sebé-Pedrós A, Ariza-Cosano A, Weirauch MT, Leininger S, Yang A, Torruella G et al (2013) Early evolution of the T-box transcription factor family. Proc Natl Acad Sci U S A 110:16050–16055PubMedPubMedCentralCrossRefGoogle Scholar
  108. Semenza GL (1998) Transcription factors and human disease. (9 Homeodomain proteins). Oxford University Press, OxfordGoogle Scholar
  109. Shen-Orr SS, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31:64–68PubMedCrossRefGoogle Scholar
  110. Shimeld SM, Degnan B, Luke GN (2010) Evolutionary genomics of the Fox genes: origin of gene families and the ancestry of gene clusters. Genomics 95:256–260PubMedCrossRefGoogle Scholar
  111. Spagnuolo A, Ristoratore F, Di Gregorio A, Aniello F, Branno M et al (2003) Unusual number and genomic organization of Hox genes in the tunicate Ciona intestinalis. Gene 309:71–79PubMedCrossRefGoogle Scholar
  112. Sparrow DB, McInerney-Leo A, Gucev ZS, Gardiner B, Marshall M (2013) Autosomal dominant spondylocostal dysostosis is caused by mutation in TBX6. Hum Mol Genet 22(8):1625–1631PubMedCrossRefGoogle Scholar
  113. Stark AM, Lin F, Kheradpour P, Pedersen JS, Parts L et al (2007) Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. Nature 450:219–232PubMedPubMedCentralCrossRefGoogle Scholar
  114. The ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74PubMedCentralCrossRefGoogle Scholar
  115. Tupler R, Perini G, Green MR (2001) Expressing the human genome. Nature 409:832–833PubMedCrossRefGoogle Scholar
  116. Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM (2009) A census of human transcription factors: function, expression and evolution. Nat Rev Genet 10:252–263PubMedCrossRefGoogle Scholar
  117. Villar D, Flicek P, Odom DT (2014) Evolution of transcription factor binding in metazoans – mechanisms and functional implications. Nat Rev Genet Nat Rev Genet 15:221–233PubMedCrossRefGoogle Scholar
  118. Vollmer JY, Clerc RG (1998) Homeobox genes in the developing mouse brain. J Neurochem 71:1–19PubMedCrossRefGoogle Scholar
  119. Wang M, Wang Q, Zhao H, Zhang X, Pan Y (2009) Evolutionary selection pressure of forkhead domain and functional divergence. Gene 432:19–25PubMedCrossRefGoogle Scholar
  120. Weigel D, Jäckle H (1990) The fork head domain: a novel DNA binding motif of eukaryotic transcription factors? Cell 63:455–456PubMedCrossRefGoogle Scholar
  121. Weigel D, Jürgens G, Küttner F, Seifert E, Jäckle H (1989) The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell 57:645–658PubMedCrossRefGoogle Scholar
  122. Wolberger C, Vershon AK, Liu B, Johnson AD, Pabo CO (1991) Crystal structure of a MATalpha2 homeodomain-operator complex suggests a general model for homeodomain-DNA interactions. Cell 67:517–536PubMedCrossRefGoogle Scholar
  123. Wold B, Myers RM (2008) Sequence census methods for functional genomics. Nat Methods 5:19–21PubMedCrossRefGoogle Scholar
  124. Wolfe SA, Nekludova L, Pabo CO (2000) DNA recognition by Cys2His2 zinc finger proteisn. Annu Rev Biophys Biomol Struct 29:183–212PubMedCrossRefGoogle Scholar
  125. Zhang H, Ackermann AM, GUSArova GA, Lowe D, Feng X et al (2006) The FoxM1 transcription factor is required to maintain pancreatic beta-cell mass. Mol Endocrinol 20:1853–1866PubMedCrossRefGoogle Scholar
  126. Zhu C, Byers KJ, McCord RP, Shi Z, Berger MF et al (2009) High-resolution DNA-binding specificity analysis of yeast transcription factors. Genome Res 19:556–566PubMedPubMedCentralCrossRefGoogle Scholar
  127. Zhu X, Ahmad SM, Aboukhalil A, Busser BW, Kim Y et al (2012) Differential regulation of mesodermal gene expression by Drosophila cell type-specific Forkhead transcription factors. Development 139:1457–1466PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  1. 1.Micro/Nano Technology CenterTokai UniversityHiratsukaJapan
  2. 2.Department of Molecular Life ScienceTokai University School of MedicineIseharaJapan

Personalised recommendations