Evolution of Genes for Color Vision and the Chemical Senses in Primates

Part of the Evolutionary Studies book series (EVOLUS)


Primates are generally regarded as visually oriented mammals, trading a sense of smell for good sight. However, recent studies have questioned this simplistic view, and it is not well understood the extent to which senses have evolved interactively or in concert with each other in primates including humans. For example, the number of olfactory receptor genes is not as clearly differentiated between species with different color vision as once asserted. Among senses, receptors of stimuli for vision, olfaction, and bitter/sweet/umami tastes all belong to the G-protein-coupled receptor (GPCR) family, for which the genetic mechanism of signal perception is well understood. Thus, it is now possible to explore the evolutionary correlation among different senses in primates by studying these receptor groups for interspecies divergence, intraspecies diversity, and functional differences among variants. In this chapter, we review recent findings on these receptors and senses in humans and other primates and discuss the future directions of studies on their sensory evolution.


Color vision Chemical sense Opsin Olfactory receptors TAS1Rs TAS2Rs 


  1. Adipietro KA, Mainland JD, Matsunami H (2012) Functional evolution of mammalian odorant receptors. PLoS Genet 8:e1002821PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adler E, Hoon MA, Mueller KL et al (2000) A novel family of mammalian taste receptors. Cell 100:693–702PubMedCrossRefGoogle Scholar
  3. Araujo AC, Didonet JJ, Araujo CS et al (2008) Color vision in the black howler monkey (Alouatta caraya). Vis Neurosci 25:243–248PubMedCrossRefGoogle Scholar
  4. Barton RA, Purvis A, Harvey PH (1995) Evolutionary radiation of visual and olfactory brain systems in primates, bats and insectivores. Phil Trans R Soc B 348:381–392PubMedCrossRefGoogle Scholar
  5. Bastir M, Rosas A, Gunz P et al (2011) Evolution of the base of the brain in highly encephalized human species. Nat Commun 2:588PubMedCrossRefGoogle Scholar
  6. Bicca-Marques JC, Garber PA (2004) Use of spatial, visual, and olfactory information during foraging in wild nocturnal and diurnal anthropoids: a field experiment comparing Aotus, Callicebus, and Saguinus. Am J Primatol 62:171–187PubMedCrossRefGoogle Scholar
  7. Boissinot S, Tan Y, Shyue SK et al (1998) Origins and antiquity of X-linked triallelic color vision systems in New World monkeys. Proc Natl Acad Sci USA 95:13749–13754PubMedPubMedCentralCrossRefGoogle Scholar
  8. Buchanan TW, Tranel D, Adolphs R (2003) A specific role for the human amygdala in olfactory memory. Learn Mem 10:319–325PubMedPubMedCentralCrossRefGoogle Scholar
  9. Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187PubMedCrossRefGoogle Scholar
  10. Bullock TH (1982) Electroreception. Annu Rev Neurosci 5:121–170PubMedCrossRefGoogle Scholar
  11. Bunce JA, Isbell LA, Grote MN et al (2011a) Color vision variation and foraging behavior in wild neotropical titi monkeys (Callicebus brunneus): possible mediating roles for spatial memory and reproductive status. Int J Primatol 32:1058–1075CrossRefGoogle Scholar
  12. Bunce JA, Isbell LA, Neitz M et al (2011b) Characterization of opsin gene alleles affecting color vision in a wild population of titi monkeys (Callicebus brunneus). Am J Primatol 73:189–196PubMedCrossRefGoogle Scholar
  13. Bushdid C, Magnasco MO, Vosshall LB et al (2014) Humans can discriminate more than 1 trillion olfactory stimuli. Science 343:1370–1372PubMedPubMedCentralCrossRefGoogle Scholar
  14. Caine NG, Mundy NI (2000) Demonstration of a foraging advantage for trichromatic marmosets (Callithrix geoffroyi) dependent on food colour. Proc R Soc Lond B 267:439–444CrossRefGoogle Scholar
  15. Caine NG, Osorio D, Mundy NI (2010) A foraging advantage for dichromatic marmosets (Callithrix geoffroyi) at low light intensity. Biol Lett 6:36–38PubMedCrossRefGoogle Scholar
  16. Campbell MC, Ranciaro A, Froment A et al (2012) Evolution of functionally diverse alleles associated with PTC bitter taste sensitivity in Africa. Mol Biol Evol 29:1141–1153PubMedCrossRefGoogle Scholar
  17. Carrigan MA, Uryasev O, Frye CB et al (2015) Hominids adapted to metabolize ethanol long before human-directed fermentation. Proc Natl Acad Sci USA 112:458–463PubMedCrossRefGoogle Scholar
  18. Carvalho LS, Davies WL, Robinson PR et al (2012) Spectral tuning and evolution of primate short-wavelength-sensitive visual pigments. Proc R Soc B 279:387–393PubMedCrossRefGoogle Scholar
  19. Collin SP, Knight MA, Davies WL et al (2003) Ancient colour vision: multiple opsin genes in the ancestral vertebrates. Curr Biol 13:R864–R865PubMedCrossRefGoogle Scholar
  20. Cropp S, Boinski S, Li W-H (2002) Allelic variation in the squirrel monkey X-linked color vision gene: biogeographical and behavioral correlates. J Mol Evol 54:734–745PubMedCrossRefGoogle Scholar
  21. Davies WI, Collin SP, Hunt DM (2012) Molecular ecology and adaptation of visual photopigments in craniates. Mol Ecol 21:3121–3158PubMedCrossRefGoogle Scholar
  22. de Lima EM, Pessoa DM, Sena L et al (2015) Polymorphic color vision in captive Uta Hick’s cuxius, or bearded sakis (Chiropotes utahickae). Am J Primatol 77:66–75PubMedCrossRefGoogle Scholar
  23. Deeb SS (2005) The molecular basis of variation in human color vision. Clin Genet 67:369–377PubMedCrossRefGoogle Scholar
  24. Deeb SS (2006) Genetics of variation in human color vision and the retinal cone mosaic. Curr Opin Genet Dev 16:301–307PubMedCrossRefGoogle Scholar
  25. DeMaria S, Ngai J (2010) The cell biology of smell. J Cell Biol 191:443–452PubMedPubMedCentralCrossRefGoogle Scholar
  26. Dominy NJ, Lucas PW (2001) Ecological importance of trichromatic vision to primates. Nature 410:363–366PubMedCrossRefGoogle Scholar
  27. Dominy NJ, Lucas PW, Osorio D et al (2001) The sensory ecology of primate food perception. Evol Anthropol 10:171–186CrossRefGoogle Scholar
  28. Dominy NJ, Garber PA, Bicca-Marques JC et al (2003a) Do female tamarins use visual cues to detect fruit rewards more successfully than do males? Anim Behav 66:829–837CrossRefGoogle Scholar
  29. Dominy NJ, Svenning JC, Li W-H (2003b) Historical contingency in the evolution of primate color vision. J Hum Evol 44:25–45PubMedCrossRefGoogle Scholar
  30. Drummond-Borg M, Deeb SS, Motulsky AG (1989) Molecular patterns of X chromosome-linked color vision genes among 134 men of European ancestry. Proc Natl Acad Sci USA 86:983–987PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dulai KS, Bowmaker JK, Mollon JD et al (1994) Sequence divergence, polymorphism and evolution of the middle-wave and long-wave visual pigment genes of great apes and old world monkeys. Vis Res 34:2483–2491PubMedCrossRefGoogle Scholar
  32. Dulai KS, von Dornum M, Mollon JD et al (1999) The evolution of trichromatic color vision by opsin gene duplication in New World and Old World primates. Genome Res 9:629–638PubMedGoogle Scholar
  33. Fedigan LM, Melin AD, Addicott JF et al (2014) The heterozygote superiority hypothesis for polymorphic color vision is not supported by long-term fitness data from wild neotropical monkeys. PLoS One 9:e84872PubMedPubMedCentralCrossRefGoogle Scholar
  34. Fernandez AA, Morris MR (2007) Sexual selection and trichromatic color vision in primates: statistical support for the preexisting-bias hypothesis. Am Nat 170:10–20PubMedCrossRefGoogle Scholar
  35. Fleagle JG (2013) Primate adaptation and evolution, 3rd edn. Academic Press, San DiegoGoogle Scholar
  36. Fortes-Marco L, Lanuza E, Martinez-Garcia F (2013) Of pheromones and kairomones: what receptors mediate innate emotional responses? Anat Rec 296:1346–1363CrossRefGoogle Scholar
  37. Garrett EC (2015) Was there a sensory trade-off in primate evolution? The vomeronasal groove as a means of understanding the vomeronasal system in the fossil record. The Graduate Center, City University of New York, New YorkGoogle Scholar
  38. Gelis L, Wolf S, Hatt H et al (2012) Prediction of a ligand-binding niche within a human olfactory receptor by combining site-directed mutagenesis with dynamic homology modeling. Angew Chem Int Ed 51:1274–1278CrossRefGoogle Scholar
  39. Gilad Y, Przeworski M, Lancet D (2004) Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates. PLoS Biol 2:e5PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gilad Y, Wiebe V, Przeworski M et al (2007) Correction: loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates (vol 2, pg 120, 2004). PLoS Biol 5:e148PubMedCentralCrossRefGoogle Scholar
  41. Go Y, Niimura Y (2008) Similar numbers but different repertoires of olfactory receptor genes in humans and chimpanzees. Mol Biol Evol 25:1897–1907PubMedCrossRefGoogle Scholar
  42. Hanazawa A, Mikami A, Sulistyo Angelika P et al (2001) Electroretinogram analysis of relative spectral sensitivity in genetically identified dichromatic macaques. Proc Natl Acad Sci USA 98:8124–8127PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hartl DL, Clark AG (2007) Principles of population genetics, 4th edn. Sinauer Associates, SunderlandGoogle Scholar
  44. Hasin Y, Olender T, Khen M et al (2008) High-resolution copy-number variation map reflects human olfactory receptor diversity and evolution. PLoS Genet 4:e1000249PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hasin-Brumshtein Y, Lancet D, Olender T (2009) Human olfaction: from genomic variation to phenotypic diversity. Trends Genet 25:178–184PubMedCrossRefGoogle Scholar
  46. Hayakawa T, Sugawara T, Go Y, Udono T, Hirai H, Imai H (2012) Eco-geographical diversification of bitter taste receptor genes (TAS2Rs) among subspecies of chimpanzees (Pan troglodytes). PLoS One 7:e43277PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hayashi T, Motulsky AG, Deeb SS (1999) Position of a ‘green-red’ hybrid gene in the visual pigment array determines colour-vision phenotype. Nat Genet 22:90–93PubMedCrossRefGoogle Scholar
  48. Hayashi S, Ueyama H, Tanabe S et al (2001) Number and variations of the red and green visual pigment genes in Japanese men with normal color vision. Jpn J Ophthalmol 45:60–67PubMedCrossRefGoogle Scholar
  49. Hayashi T, Kubo A, Takeuchi T et al (2006) Novel form of a single X-linked visual pigment gene in a unique dichromatic color-vision defect. Vis Neurosci 23:411–417PubMedCrossRefGoogle Scholar
  50. Hayden S, Bekaert M, Crider TA et al (2010) Ecological adaptation determines functional mammalian olfactory subgenomes. Genome Res 20:1–9PubMedPubMedCentralCrossRefGoogle Scholar
  51. Heesy CP, Ross CF, Demes B (2007) Oculomotor stability and the functions of the postorbital bar and septum. In: Ravosa MJ, Dagosto M (eds) Primate origins: adaptations and evolution. Springer, New York, pp 257–283CrossRefGoogle Scholar
  52. Heritage S (2014) Modeling olfactory bulb evolution through primate phylogeny. PLoS One 9:e113904PubMedPubMedCentralCrossRefGoogle Scholar
  53. Heymann EW (2006) The neglected sense-olfaction in primate behavior, ecology, and evolution. Am J Primatol 68:519–524PubMedCrossRefGoogle Scholar
  54. Hiramatsu C, Radlwimmer FB, Yokoyama S et al (2004) Mutagenesis and reconstitution of middle-to-long-wave-sensitive visual pigments of New World monkeys for testing the tuning effect of residues at sites 229 and 233. Vis Res 44:2225–2231PubMedCrossRefGoogle Scholar
  55. Hiramatsu C, Tsutsui T, Matsumoto Y et al (2005) Color-vision polymorphism in wild capuchins (Cebus capucinus) and spider monkeys (Ateles geoffroyi) in Costa Rica. Am J Primatol 67:447–461PubMedCrossRefGoogle Scholar
  56. Hiramatsu C, Melin AD, Aureli F et al (2008) Importance of achromatic contrast in short-range fruit foraging of primates. PLoS One 3:e3356PubMedPubMedCentralCrossRefGoogle Scholar
  57. Hiramatsu C, Melin AD, Aureli F et al (2009) Interplay of olfaction and vision in fruit foraging of spider monkeys. Anim Behav 77:1421–1426CrossRefGoogle Scholar
  58. Hiwatashi T, Okabe Y, Tsutsui T et al (2010) An explicit signature of balancing selection for color-vision variation in New World monkeys. Mol Biol Evol 27:453–464PubMedCrossRefGoogle Scholar
  59. Hiwatashi T, Mikami A, Katsumura T et al (2011) Gene conversion and purifying selection shape nucleotide variation in gibbon L/M opsin genes. BMC Evol Biol 11:312PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hoon MA, Adler E, Lindemeier J et al (1999) Putative mammalian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity. Cell 96:541–551PubMedCrossRefGoogle Scholar
  61. Hudson R (1999) From molecule to mind: the role of experience in shaping olfactory function. J Comp Physiol A 185:297–304PubMedCrossRefGoogle Scholar
  62. Hughes GM, Teeling EC, Higgins DG (2014) Loss of olfactory receptor function in hominin evolution. PLoS One 9:e84714PubMedPubMedCentralCrossRefGoogle Scholar
  63. Ibbotson RE, Hunt DM, Bowmaker JK et al (1992) Sequence divergence and copy number of the middle- and long-wave photopigment genes in Old World monkeys. Proc R Soc Lond B 247:145–154CrossRefGoogle Scholar
  64. Jacobs GH (1993) The distribution and nature of colour vision among the mammals. Biol Rev 68:413–471PubMedCrossRefGoogle Scholar
  65. Jacobs GH (2007) New World monkeys and color. Int J Primatol 28:729–759CrossRefGoogle Scholar
  66. Jacobs GH (2013) Losses of functional opsin genes, short-wavelength cone photopigments, and color vision-a significant trend in the evolution of mammalian vision. Vis Neurosci 30:39–53PubMedCrossRefGoogle Scholar
  67. Jacobs GH, Deegan JF II (2001) Photopigments and colour vision in New World monkeys from the family Atelidae. Proc R Soc Lond B 268:695–702CrossRefGoogle Scholar
  68. Jacobs GH, Deegan JF II (2005) Polymorphic New World monkeys with more than three M/L cone types. J Opt Soc Am A 22:2072–2080CrossRefGoogle Scholar
  69. Jacobs GH, Nathans J (2009) The evolution of primate color vision. Sci Am 300:56–63PubMedCrossRefGoogle Scholar
  70. Jacobs GH, Williams GA (2001) The prevalence of defective color vision in Old World monkeys and apes. Col Res Appl 26. (Suppl.):S123–S127CrossRefGoogle Scholar
  71. Jacobs GH, Neitz M, Deegan JF et al (1996) Trichromatic colour vision in New World monkeys. Nature 382:156–158PubMedCrossRefGoogle Scholar
  72. Jameson KA, Highnote SM, Wasserman LM (2001) Richer color experience in observers with multiple photopigment opsin genes. Psychon Bull Rev 8:244–261PubMedCrossRefGoogle Scholar
  73. Jiang P, Josue J, Li X et al (2012) Major taste loss in carnivorous mammals. Proc Natl Acad Sci USA 109:4956–4961PubMedPubMedCentralCrossRefGoogle Scholar
  74. Jones G, Teeling EC, Rossiter SJ (2013) From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats. Front Physiol 4:117PubMedPubMedCentralCrossRefGoogle Scholar
  75. Kamilar JM, Heesy CP, Bradley BJ (2013) Did trichromatic color vision and red hair color coevolve in primates? Am J Primatol 75:740–751PubMedCrossRefGoogle Scholar
  76. Kawamura S, Kubotera N (2004) Ancestral loss of short wave-sensitive cone visual pigment in lorisiform prosimians, contrasting with its strict conservation in other prosimians. J Mol Evol 58:314–321PubMedCrossRefGoogle Scholar
  77. Kawamura S, Hiramatsu C, Melin AD et al (2012) Polymorphic color vision in primates: evolutionary considerations. In: Hirai H, Imai H, Go Y (eds) Post-genome biology of primates. Springer, Tokyo, pp 93–120CrossRefGoogle Scholar
  78. Keller A, Zhuang H, Chi Q et al (2007) Genetic variation in a human odorant receptor alters odour perception. Nature 449:468–472PubMedCrossRefGoogle Scholar
  79. Kim UK, Wooding S, Riaz N et al (2006) Variation in the human TAS1R taste receptor genes. Chem Senses 31:599–611PubMedCrossRefGoogle Scholar
  80. Klailova M, Lee PC (2014) Wild Western lowland gorillas signal selectively using odor. PLoS One 9:e99554PubMedPubMedCentralCrossRefGoogle Scholar
  81. Kuang S, Zhang T (2014) Smelling directions: olfaction modulates ambiguous visual motion perception. Sci Rep 4:5796PubMedPubMedCentralCrossRefGoogle Scholar
  82. Lambert D (1987) The Cambridge guide to prehistoric man. Cambridge University Press, CambridgeGoogle Scholar
  83. Laska M, Seibt A, Weber A (2000) ‘Microsmatic’ primates revisited: olfactory sensitivity in the squirrel monkey. Chem Senses 25:47–53PubMedCrossRefGoogle Scholar
  84. Laska M, Freist P, Krause S (2007) Which senses play a role in nonhuman primate food selection? A comparison between squirrel monkeys and spider monkeys. Am J Primatol 69:282–294PubMedCrossRefGoogle Scholar
  85. Levenson DH, Fernandez-Duque E, Evans S et al (2007) Mutational changes in S-cone opsin genes common to both nocturnal and cathemeral Aotus monkeys. Am J Primatol 69:757–765PubMedCrossRefGoogle Scholar
  86. Li X, Staszewski L, Xu H et al (2002) Human receptors for sweet and umami taste. Proc Natl Acad Sci USA 99:4692–4696PubMedPubMedCentralCrossRefGoogle Scholar
  87. Martinez-Garcia F, Martinez-Ricos J, Agustin-Pavon C et al (2009) Refining the dual olfactory hypothesis: pheromone reward and odour experience. Behav Brain Res 200:277–286PubMedCrossRefGoogle Scholar
  88. Matsui A, Go Y, Niimura Y (2010) Degeneration of olfactory receptor gene repertories in primates: no direct link to full trichromatic vision. Mol Biol Evol 27:1192–1200PubMedCrossRefGoogle Scholar
  89. Matsumoto Y, Hiramatsu C, Matsushita Y et al (2014) Evolutionary renovation of L/M opsin polymorphism confers a fruit discrimination advantage to ateline New World monkeys. Mol Ecol 23:1799–1812PubMedPubMedCentralCrossRefGoogle Scholar
  90. Matsushita Y, Oota H, Welker BJ et al (2014) Color vision variation as evidenced by hybrid L/M opsin genes in wild populations of trichromatic Alouatta New World monkeys. Int J Primatol 35:71–87PubMedCrossRefGoogle Scholar
  91. McRae JF, Jaeger SR, Bava CM et al (2013) Identification of regions associated with variation in sensitivity to food-related odors in the human genome. Curr Biol 23:1596–1600PubMedCrossRefGoogle Scholar
  92. Melin AD, Fedigan LM, Hiramatsu C et al (2007) Effects of colour vision phenotype on insect capture by a free-ranging population of white-faced capuchins (Cebus capucinus). Anim Behav 73:205–214CrossRefGoogle Scholar
  93. Melin AD, Fedigan LM, Hiramatsu C et al (2008) Polymorphic color vision in white-faced capuchins (Cebus capucinus): is there foraging niche divergence among phenotypes? Behav Ecol Sociobiol 62:659–670CrossRefGoogle Scholar
  94. Melin AD, Fedigan LM, Hiramatsu C et al (2009) Fig foraging by dichromatic and trichromatic Cebus capucinus in a tropical dry forest. Int J Primatol 30:753–775CrossRefGoogle Scholar
  95. Melin AD, Fedigan LM, Young HC et al (2010) Can color vision variation explain sex differences in invertebrate foraging by capuchin monkeys? Curr Zool 56:300–312Google Scholar
  96. Melin AD, Moritz GL, Fosbury RAE et al (2012) Why aye-ayes see blue. Am J Primatol 74:185–192PubMedCrossRefGoogle Scholar
  97. Melin AD, Kline DW, Hickey C et al (2013a) Food search through the eyes of a monkey: a functional substitution approach for assessing the ecology of primate color vision. Vis Res 87:87–96CrossRefGoogle Scholar
  98. Melin AD, Matsushita Y, Moritz GL et al (2013b) Inferred L/M cone opsin polymorphism of ancestral tarsiers sheds dim light on the origin of anthropoid primates. Proc R Soc B 280:20130189PubMedPubMedCentralCrossRefGoogle Scholar
  99. Melin AD, Hiramatsu C, Parr NA et al (2014) The behavioral ecology of color vision: considering fruit conspicuity, detection distance and dietary importance. Int J Primatol 35:258–287CrossRefGoogle Scholar
  100. Menashe I, Abaffy T, Hasin Y et al (2007) Genetic elucidation of human hyperosmia to isovaleric acid. PLoS Biol 5:e284PubMedPubMedCentralCrossRefGoogle Scholar
  101. Meyerhof W, Batram C, Kuhn C et al (2010) The molecular receptive ranges of human TAS2R bitter taste receptors. Chem Senses 35:157–170PubMedCrossRefGoogle Scholar
  102. Mombaerts P (2004) Genes and ligands for odorant, vomeronasal and taste receptors. Nat Rev Neurosci 5:263–278PubMedCrossRefGoogle Scholar
  103. Muniz JAPC, de Athaide LM, Gomes BD et al (2014) Ganglion cell and displaced amacrine cell density distribution in the retina of the howler monkey (Alouatta caraya). PLoS One 9:e115291PubMedPubMedCentralCrossRefGoogle Scholar
  104. Nathans J, Hogness DS (1983) Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin. Cell 34:807–814PubMedCrossRefGoogle Scholar
  105. Nathans J, Thomas D, Hogness DS (1986) Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science 232:193–202PubMedCrossRefGoogle Scholar
  106. Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152PubMedPubMedCentralCrossRefGoogle Scholar
  107. Nei M, Niimura Y, Nozawa M (2008) The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nat Rev Genet 9:951–963PubMedCrossRefGoogle Scholar
  108. Neville KR, Haberly LB (2004) Olfactory cortex. In: Shepherd GM (ed) The synaptic organization of the brain, 5th edn. Oxford University Press, New York, pp 415–454CrossRefGoogle Scholar
  109. Niimura Y, Nei M (2005) Evolutionary dynamics of olfactory receptor genes in fishes and tetrapods. Proc Natl Acad Sci USA 102:6039–6044PubMedPubMedCentralCrossRefGoogle Scholar
  110. Niimura Y, Nei M (2007) Extensive gains and losses of olfactory receptor genes in mammalian evolution. PLoS One 2:e708PubMedPubMedCentralCrossRefGoogle Scholar
  111. Niimura Y, Matsui A, Touhara K (2014) Extreme expansion of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals. Genome Res 24:1485–1496PubMedPubMedCentralCrossRefGoogle Scholar
  112. Nozawa M, Kawahara Y, Nei M (2007) Genomic drift and copy number variation of sensory receptor genes in humans. Proc Natl Acad Sci USA 104:20421–20426PubMedPubMedCentralCrossRefGoogle Scholar
  113. Olender T, Waszak SM, Viavant M et al (2012) Personal receptor repertoires: olfaction as a model. BMC Genomics 13:414PubMedPubMedCentralCrossRefGoogle Scholar
  114. Onishi A, Koike S, Ida M et al (1999) Dichromatism in macaque monkeys. Nature 402:139–140PubMedCrossRefGoogle Scholar
  115. Osorio D, Smith AC, Vorobyev M et al (2004) Detection of fruit and the selection of primate visual pigments for color vision. Am Nat 164:696–708CrossRefGoogle Scholar
  116. Parraga CA, Troscianko T, Tolhurst DJ (2002) Spatiochromatic properties of natural images and human vision. Curr Biol 12:483–487PubMedCrossRefGoogle Scholar
  117. Perry GH, Martin RD, Verrelli BC (2007) Signatures of functional constraint at aye-aye opsin genes: the potential of adaptive color vision in a nocturnal primate. Mol Biol Evol 24:1963–1970PubMedCrossRefGoogle Scholar
  118. Pessoa DM, Maia R, de Albuquerque Ajuz RC et al (2014) The adaptive value of primate color vision for predator detection. Am J Primatol 76:721–729PubMedCrossRefGoogle Scholar
  119. Peterlin Z, Firestein S, Rogers ME (2014) The state of the art of odorant receptor deorphanization: a report from the orphanage. J Gen Physiol 143:527–542PubMedPubMedCentralCrossRefGoogle Scholar
  120. Ressler KJ, Sullivan SL, Buck LB (1993) A zonal organization of odorant receptor gene expression in the olfactory epithelium. Cell 73:597–609PubMedCrossRefGoogle Scholar
  121. Rowe MP, Jacobs GH (2007) Naturalistic color discriminations in polymorphic platyrrhine monkeys: effects of stimulus luminance and duration examined with functional substitution. Vis Neurosci 24:17–23PubMedCrossRefGoogle Scholar
  122. Rushmore J, Leonhardt SD, Drea CM (2012) Sight or scent: lemur sensory reliance in detecting food quality varies with feeding ecology. PLoS One 7:e41558PubMedPubMedCentralCrossRefGoogle Scholar
  123. Saito A, Mikami A, Hasegawa T et al (2003) Behavioral evidence of color vision deficiency in a protanomalia chimpanzee (Pan troglodytes). Primates 44:171–176PubMedGoogle Scholar
  124. Saito A, Kawamura S, Mikami A et al (2005a) Demonstration of a genotype-phenotype correlation in the polymorphic color vision of a non-callitrichine New World monkey, capuchin (Cebus apella). Am J Primatol 67:471–485PubMedCrossRefGoogle Scholar
  125. Saito A, Mikami A, Kawamura S et al (2005b) Advantage of dichromats over trichromats in discrimination of color-camouflaged stimuli in nonhuman primates. Am J Primatol 67:425–436PubMedCrossRefGoogle Scholar
  126. Saito H, Chi Q, Zhuang H et al (2009) Odor coding by a mammalian receptor repertoire. Sci Signal 2:ra9PubMedPubMedCentralCrossRefGoogle Scholar
  127. Sharpe LT, Stockman A, Jagle H et al (1999) Opsin genes, cone photopigments, color vision, and color blindness. In: Gegenfurtner KR, Sharpe LT (eds) Color vision: from genes to perception. Cambridge University Press, Cambridge, pp 3–51Google Scholar
  128. Shepherd GM (2004) The human sense of smell: are we better than we think? PLoS Biol 2:E146PubMedPubMedCentralCrossRefGoogle Scholar
  129. Shichida Y, Imai H (1998) Visual pigment: G-protein-coupled receptor for light signals. Cell Mol Life Sci 54:1299–1315PubMedCrossRefGoogle Scholar
  130. Shigemura N, Shirosaki S, Sanematsu K et al (2009) Genetic and molecular basis of individual differences in human umami taste perception. PLoS One 4:e6717PubMedPubMedCentralCrossRefGoogle Scholar
  131. Siemers BM, Goerlitz HR, Robsomanitrandrasana E et al (2007) Sensory basis of food detection in wild Microcebus murinus. Int J Primatol 28:291–304CrossRefGoogle Scholar
  132. Silveira LCL, Saito CA, da Silva FM et al (2014) Alouatta trichromatic color vision: cone spectra and physiological responses studied with microspectrophotometry and single unit retinal electrophysiology. PLoS One 9:e113321PubMedPubMedCentralCrossRefGoogle Scholar
  133. Smith AC, Buchanan-Smith HM, Surridge AK et al (2003) Leaders of progressions in wild mixed-species troops of saddleback (Saguinus fuscicollis) and mustached tamarins (S. mystax), with emphasis on color vision and sex. Am J Primatol 61:145–157PubMedCrossRefGoogle Scholar
  134. Smith TD, Bhatnagar KP, Tuladhar P et al (2004) Distribution of olfactory epithelium in the primate nasal cavity: are microsmia and macrosmia valid morphological concepts? Anat Rec A 281A:1173–1181CrossRefGoogle Scholar
  135. Smith AC, Buchanan-Smith HM, Surridge AK et al (2005) Factors affecting group spread within wild mixed-species troops of saddleback and mustached tamarins. Int J Primatol 26:337–355CrossRefGoogle Scholar
  136. Smith TD, Rossie JB, Bhatnagar KP (2007) Evolution of the nose and nasal skeleton in primates. Evol Anthropol 16:132–146CrossRefGoogle Scholar
  137. Smith AC, Surridge AK, Prescott MJ et al (2012) Effect of colour vision status on insect prey capture efficiency of captive and wild tamarins (Saguinus spp.) Anim Behav 83:479–486CrossRefGoogle Scholar
  138. Sugawara T, Go Y, Udono T et al (2011) Diversification of bitter taste receptor gene family in western chimpanzees. Mol Biol Evol 28:921–931PubMedCrossRefGoogle Scholar
  139. Sumner P, Mollon JD (2000) Catarrhine photopigments are optimized for detecting targets against a foliage background. J Exp Biol 203:1963–1986PubMedGoogle Scholar
  140. Sumner P, Mollon JD (2003) Colors of primate pelage and skin: objective assessment of conspicuousness. Am J Primatol 59:67–91PubMedCrossRefGoogle Scholar
  141. Surridge AK, Osorio D, Mundy NI (2003) Evolution and selection of trichromatic vision in primates. Trends Ecol Evol 18:198–205CrossRefGoogle Scholar
  142. Surridge AK, Suarez SS, Buchanan-Smith HM et al (2005) Color vision pigment frequencies in wild tamarins (Saguinus spp.) Am J Primatol 67:463–470PubMedCrossRefGoogle Scholar
  143. Suzuki N, Sugawara T, Matsui A et al (2010) Identification of non-taster Japanese macaques for a specific bitter taste. Primates 51:285–289PubMedCrossRefGoogle Scholar
  144. Suzuki-Hashido N, Hayakawa T, Matsui A et al (2015) Rapid expansion of phenylthiocarbamide non-tasters among Japanese macaques. PLoS One 10:e0132016PubMedPubMedCentralCrossRefGoogle Scholar
  145. Talebi MG, Pope TR, Vogel ER et al (2006) Polymorphism of visual pigment genes in the muriqui (Primates, Atelidae). Mol Ecol 15:551–558PubMedCrossRefGoogle Scholar
  146. Tan Y, Li W-H (1999) Trichromatic vision in prosimians. Nature 402:36PubMedCrossRefGoogle Scholar
  147. Tan Y, Yoder AD, Yamashita N et al (2005) Evidence from opsin genes rejects nocturnality in ancestral primates. Proc Natl Acad Sci USA 102:14712–14716PubMedPubMedCentralCrossRefGoogle Scholar
  148. Terao K, Mikami A, Saito A et al (2005) Identification of a protanomalous chimpanzee by molecular genetic and electroretinogram analyses. Vis Res 45:1225–1235PubMedCrossRefGoogle Scholar
  149. Toda Y, Okada S, Misaka T (2011) Establishment of a new cell-based assay to measure the activity of sweeteners in fluorescent food extracts. J Agric Food Chem 59:12131–12138PubMedPubMedCentralCrossRefGoogle Scholar
  150. Toda Y, Nakagita T, Hayakawa T et al (2013) Two distinct determinants of ligand specificity in T1R1/T1R3 (the umami taste receptor). J Biol Chem 288:36863–36877PubMedPubMedCentralCrossRefGoogle Scholar
  151. Touhara K, Vosshall LB (2009) Sensing odorants and pheromones with chemosensory receptors. Annu Rev Physiol 71:307–332PubMedCrossRefGoogle Scholar
  152. Touhara K, Sengoku S, Inaki K et al (1999) Functional identification and reconstitution of an odorant receptor in single olfactory neurons. Proc Natl Acad Sci USA 96:4040–4045PubMedPubMedCentralCrossRefGoogle Scholar
  153. Valenta K, Burke RJ, Styler SA et al (2013) Colour and odour drive fruit selection and seed dispersal by mouse lemurs. Sci Rep 3:2424PubMedPubMedCentralCrossRefGoogle Scholar
  154. Valenta K, Brown KA, Melin AD et al (2015) It's not easy being blue: are there olfactory and visual trade-offs in plant signalling? PLoS One 10:e0131725PubMedPubMedCentralCrossRefGoogle Scholar
  155. Vassar R, Ngai J, Axel R (1993) Spatial segregation of odorant receptor expression in the mammalian olfactory epithelium. Cell 74:309–318PubMedCrossRefGoogle Scholar
  156. Veilleux CC, Bolnick DA (2009) Opsin gene polymorphism predicts trichromacy in a cathemeral lemur. Am J Primatol 71:86–90PubMedCrossRefGoogle Scholar
  157. Veilleux CC, Cummings ME (2012) Nocturnal light environments and species ecology: implications for nocturnal color vision in forests. J Exp Biol 215:4085–4096PubMedCrossRefGoogle Scholar
  158. Veilleux CC, Louis EE Jr, Bolnick DA (2013) Nocturnal light environments influence color vision and signatures of selection on the OPN1SW opsin gene in nocturnal lemurs. Mol Biol Evol 30:1420–1437PubMedCrossRefGoogle Scholar
  159. Verrelli BC, Tishkoff SA (2004) Signatures of selection and gene conversion associated with human color vision variation. Am J Hum Genet 75:363–375PubMedPubMedCentralCrossRefGoogle Scholar
  160. Verrelli BC, Lewis CM Jr, Stone AC et al (2008) Different selective pressures shape the molecular evolution of color vision in chimpanzee and human populations. Mol Biol Evol 25:2735–2743PubMedPubMedCentralCrossRefGoogle Scholar
  161. Vogel ER, Neitz M, Dominy NJ (2007) Effect of color vision phenotype on the foraging of wild white-faced capuchins, Cebus capucinus. Behav Ecol 18:292–297CrossRefGoogle Scholar
  162. Vorobyev M (2004) Ecology and evolution of primate colour vision. Clin Exp Optom 87:230–238PubMedCrossRefGoogle Scholar
  163. Wald G (1968) Molecular basis of visual excitation. Science 162:230–239PubMedCrossRefGoogle Scholar
  164. Wang X, Thomas SD, Zhang J (2004) Relaxation of selective constraint and loss of function in the evolution of human bitter taste receptor genes. Hum Mol Genet 13:2671–2678PubMedCrossRefGoogle Scholar
  165. Wildman DE, Jameson NM, Opazo JC et al (2009) A fully resolved genus level phylogeny of neotropical primates (Platyrrhini). Mol Phylogenet Evol 53:694–702PubMedCrossRefGoogle Scholar
  166. Winderickx J, Lindsey DT, Sanocki E et al (1992) Polymorphism in red photopigment underlies variation in colour matching. Nature 356:431–433PubMedCrossRefGoogle Scholar
  167. Winderickx J, Battisti L, Hibiya Y et al (1993) Haplotype diversity in the human red and green opsin genes: evidence for frequent sequence exchange in exon 3. Hum Mol Genet 2:1413–1421PubMedCrossRefGoogle Scholar
  168. Wooding S, Bufe B, Grassi C et al (2006) Independent evolution of bitter-taste sensitivity in humans and chimpanzees. Nature 440:930–934PubMedCrossRefGoogle Scholar
  169. Yokoyama S (2000a) Molecular evolution of vertebrate visual pigments. Prog Retin Eye Res 19:385–419PubMedCrossRefGoogle Scholar
  170. Yokoyama S (2000b) Phylogenetic analysis and experimental approaches to study color vision in vertebrates. Methods Enzymol 315:312–325PubMedCrossRefGoogle Scholar
  171. Yokoyama S, Yang H, Starmer WT (2008) Molecular basis of spectral tuning in the red- and green-sensitive (M/LWS) pigments in vertebrates. Genetics 179:2037–2043PubMedPubMedCentralCrossRefGoogle Scholar
  172. Young JM, Shykind BM, Lane RP et al (2003) Odorant receptor expressed sequence tags demonstrate olfactory expression of over 400 genes, extensive alternate splicing and unequal expression levels. Genome Biol 4:R71PubMedPubMedCentralCrossRefGoogle Scholar
  173. Zhao H, Yang JR, Xu H et al (2010) Pseudogenization of the umami taste receptor gene Tas1r1 in the giant panda coincided with its dietary switch to bamboo. Mol Biol Evol 27:2669–2673PubMedPubMedCentralCrossRefGoogle Scholar
  174. Zhou X, Wang B, Pan Q et al (2014) Whole-genome sequencing of the snub-nosed monkey provides insights into folivory and evolutionary history. Nat Genet 46:1303–1310PubMedCrossRefGoogle Scholar
  175. Zhuang H, Matsunami H (2008) Evaluating cell-surface expression and measuring activation of mammalian odorant receptors in heterologous cells. Nat Protoc 3:1402–1413PubMedPubMedCentralCrossRefGoogle Scholar
  176. Zhuang HY, Chien MS, Matsunami H (2009) Dynamic functional evolution of an odorant receptor for sex-steroid-derived odors in primates. Proc Natl Acad Sci USA 106:21247–21251PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  1. 1.Department of Integrated Biosciences, Graduate School of Frontier SciencesThe University of TokyoKashiwaJapan
  2. 2.Department of Anthropology and Archaeology, Department of Medical GeneticsUniversity of CalgaryCalgaryCanada
  3. 3.Alberta Children’s Hospital Research InstituteUniversity of CalgaryCalgaryCanada

Personalised recommendations