Skip to main content

The Endocranial Vascular System: Tracing Vessels

  • Chapter
  • First Online:
Digital Endocasts

Abstract

The vascular system is distributed throughout the cerebral, connective, and bony elements of the braincase, and it supplies an anatomical connection between these three components of the endocranial morphology. The imprints and traces left by arteries and veins in the bone thickness and surface can be useful in the analysis of vascular features in fossil specimens and archaeological samples. These traits can provide indirect physiological or morphogenetic information associated with evolutionary changes, demographic relationships, or individual life history. Digital anatomy and computed morphometrics have represented a major advance in the study of these craniovascular characters, for which there is still limited knowledge available regarding their variability, functions, and development. In this chapter, we present and discuss current evidence on the imprints of middle meningeal vessels, diploic veins, dural venous sinuses, and emissary veins. We review the morphological and functional information about these craniovascular features and their applications in paleontology, medicine, bioarchaeology, and forensic science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adachi B (1928) Das Arteriensystem der Japaner. Band 1 Verlag der Kaiserlich-Japanishen Universitat zu Kyoto, Kyoto

    Google Scholar 

  • Adeeb N, Mortazavi M, Tubbs R, Cohen-Gadol A (2012) The cranial dura mater: a review of its history, embryology, and anatomy. Childs Nerv Syst 28:827–837

    Article  Google Scholar 

  • Aiello L, Wheeler P (1995) The expensive-tissue hypothesis: the brain and the digestive-system in human and primate evolution. Curr Anthropol 36:199–221

    Article  Google Scholar 

  • Anderson PJ, Harkness WJ, Taylor W, Jones BM, Hayward RD (1997) Anomalous venous drainage in a cse of non-syndromic craniosynostosis. Childs Nerv Syst 13:97–100

    Article  Google Scholar 

  • Anzelmo M, Ventrice F, Barbeito-Andrés J, Pucciarelli HM, Sardi ML (2014) Ontogenetic changes in cranial vault thickness in a modern sample of Homo sapiens. Am J Hum Biol 27:475–485

    Article  Google Scholar 

  • Ayanzen RH, Bird CR, Keller PJ, McCully FJ, Theobald MR, Heiserman JE (2000) Cerebral MR venography: normal anatomy and potential diagnostic pitfalls. Am J Neuroradiol 21:74–78

    Google Scholar 

  • Baab KL, Freidline SE, Wang SL, Hanson T (2010) Relationship of cranial robusticity to cranial form, geography and climate in Homo sapiens. Am J Phys Anthropol 141:97–115

    Google Scholar 

  • Balzeau A (2013) Thickened cranial vault and parasagittal keeling: correlated traits and autapomorphies of Homo erectus? J Hum Evol 64:631–644

    Article  Google Scholar 

  • Barozzino T, Sgro M (2002) Transillumination of the neonatal skull: seeing the light. Can Med Assoc J 167:1271–1272

    Google Scholar 

  • Bastir M (2008) A systems-model for the morphological analysis of integration and modularity in human craniofacial evolution. J Anthropol Sci 86:37–58

    Google Scholar 

  • Bastir M, Rosas A, O’Higgins P (2006) Craniofacial levels and the morphological maturation of the human skull. J Anat 209:637–654

    Article  Google Scholar 

  • Berry AC, Berry RJ (1967) Epigenetic variation in human cranium. J Anat 101:361–380

    Google Scholar 

  • Bertolizio G, Mason L, Bissonn B (2011) Brain temperature: heat production, elimination and clinical relevance. Pediatr Anesth 21:347–358

    Article  Google Scholar 

  • Bookstein FL (1991) Morphometric tools for landmark data. Cambridge University Press, Cambridge

    Google Scholar 

  • Boruah S, Paskoff GR, Shender BS, Subit DL, Salzar RS, Crandall JR (2015) Variation of bone layer thicknesses and trabecular volume fraction in the adult male human calvarium. Bone 77:120–134

    Article  Google Scholar 

  • Boyd GI (1930) The emissary foramina of the cranium in man and the anthropoids. J Anat 65:108–121

    Google Scholar 

  • Bremmer J, Berckel BM, Persoon S, Kappelle LJ, Lammertsma A, Kloet R, Luurtsema G, Rijbroek A, Klijn CM, Boellaard R (2011) Day-to-day test–retest variability of CBF, CMRO2, and OEF measurements using dynamic 15O PET studies. Mol. Imaging Biol 13:759–768

    Article  Google Scholar 

  • Brengelmann G (1993) Specialized brain cooling in humans? FASEB J 7:1148–1153

    Google Scholar 

  • Breschet M (1829) Recherches anatomiques, physiologiques et pathologiques sur le systeme veineux. Villeret, Paris

    Google Scholar 

  • Brown P (1994) Cranial vault thickness in Asian Homo erectus and Homo sapiens. Cour Forsch Inst Senckenberg 171:33–46

    Google Scholar 

  • Bruner E (2004) Geometric morphometrics and paleoneurology: brain shape evolution in the genus Homo. J Hum Evol 47:279–303

    Article  Google Scholar 

  • Bruner E (2010) The evolution of the parietal cortical areas in the human genus: between structure and cognition. In: Broadfield D, Yuan M, Schick K, Toth N (eds) Human Brain Evolving. The Stone Age Institute, Bloomington, pp 83–96

    Google Scholar 

  • Bruner E (2015) Functional craniology and brain evolution. In: Bruner E (ed) Human Paleoneurology. Springer, Cham, pp 57–94

    Google Scholar 

  • Bruner E, Averini M, Manzi G (2003) Endocranial traits. Prevalence and distribution in a recent human population. Eur J Anat 7:23–33

    Google Scholar 

  • Bruner E, de la Cuétara JM, Masters M, Amano H, Ogihara N (2014) Functional craniology and brain evolution: from paleontology to biomedicine. Front Neuroanat 8:1–15

    Article  Google Scholar 

  • Bruner E, de la Cuétara JM, Musso F (2012) Quantifying patterns of endocranial heat distribution: brain geometry and thermoregulation. Am J Hum Biol 24:753–762

    Article  Google Scholar 

  • Bruner E, Holloway R (2010) Bivariate approach to the widening of the frontal lobes in the genus Homo. J Hum Evol 58:138–146

    Article  Google Scholar 

  • Bruner E, Jacobs HIL (2013) Alzheimer’s disease: the downside of a highly evolved parietal lobe? J Alzheimer’s Dis 35:227–240

    Google Scholar 

  • Bruner E, de la Cuétara JM, Holloway R (2011a) A bivariate approach to the variation of the parietal curvature in the genus Homo. Anat Rec 294:1548–1556

    Article  Google Scholar 

  • Bruner E, Mantini S, Musso F, de la Cuétara JM, Ripani M, Sherkat S (2011b) The evolution of the meningeal vascular system in the human genus: from brain shape to thermoregulation. Am J Hum Biol 23:35–43

    Article  Google Scholar 

  • Bruner E, Mantini S, Perna A, Maffei C (2005) Fractal dimension of the middle meningeal vessels: variation and evolution in Homo erectus, Neanderthals, and modern humans. Eur J Morphol 42:217–224

    Article  Google Scholar 

  • Bruner E, Mantini S, Ripani M (2009) Landmark-based analysis of the morphological relationship between endocranial shape and traces of the middle meningeal vessels. Anat Rec 292:518–527

    Article  Google Scholar 

  • Bruner E, Manzi G (2005) CT-based description and phyletic evaluation of the archaic human calvarium from Ceprano, Italy. Anat Rec 285:643–658

    Article  Google Scholar 

  • Bruner E, Manzi G (2006) Digital tools for the preservation of the human fossil heritage: Ceprano, Saccopastore, and other case studies. Hum Evol 21:33–44

    Article  Google Scholar 

  • Bruner E, Píšová H, Martín-Francés L, María Martinón-Torres M, Arsuaga JL, Carbonell E, Bermúdez de Castro JM (2016) A human parietal fragment from the late Early Pleistocene Gran Dolina-TD6 cave site, Sierra de Atapuerca, Spain. Comptes Rendus Palevol (early view)

    Google Scholar 

  • Bruner E, Sherkat S (2008) The middle meningeal artery: from clinics to fossils. Childs Nerv Syst 24:1289–1298

    Article  Google Scholar 

  • Buikstra JE, Frankenberg SR, Konigsberg LW (1990) Skeletal biological distance studies in American physical anthropology: recent trends. Am J Phys Anthropol 82:1–7

    Article  Google Scholar 

  • Buikstra JE, Ubelaker DH (1994) Standards for data collection from humans skeletal remains. Arkansas Archaeological Survey, Fayetteville

    Google Scholar 

  • Burian R (2004) Molecular epigenesis, molecular pleiotropy, and molecular gene definitions. Hist Philos Life Sci 26:59–80

    Article  Google Scholar 

  • Butler H (1957) The development of certain human dural venous sinuses. J Anat 91:510–526

    Google Scholar 

  • Cabanac M (1993) Selective brain cooling in humans: ‘fancy’ or fact? FASEB J 7:1143–1146

    Google Scholar 

  • Cabanac M (1995) Human selective brain cooling. Springer Verlag, Heidelberg

    Google Scholar 

  • Cabanac M, Brinnel H (1985) Blood flow in the emissary veins of the human head during hyperthermia. Eur J Appl Physiol 54:172–176

    Article  Google Scholar 

  • Caputa M (2004) Selective brain cooling:a multiple regulatory mechanism. J Therm Biol 29:691–702

    Article  Google Scholar 

  • Chatterjee N, Ansari S, Vakil P, Prabhakaran S, Carroll T, Hurley M (2015) Automated analysis of perfusion weighted MRI using asymmetry in vascular territories. Magn Reson Imaging 33:618–623

    Article  Google Scholar 

  • Chen F, Deng Y-F, Liu B, Zou L, Wang D, Han H (2011) Arachnoid granulations of middle cranial fossa: a population study between cadaveric dissection and in vivo computed tomography examination. Surg Radiol Anat 33:215–221

    Article  Google Scholar 

  • Connor S, Jarosz J (2002) Magnetic resonance imaging of cerebral venous sinus thrombosis. Clin Radiol 57:449–461

    Article  Google Scholar 

  • Copes L (2012) Comparative and experimental investigations of cranial robusticity in mid-pleistocene hominins. Arizona State University

    Google Scholar 

  • Copes L, Kimbel W (2016) Cranial vault thickness in primates: Homo erectus does not have uniquely thick vault bones. J Hum Evol 90:120–134

    Article  Google Scholar 

  • Curé JK, Van Tassel P, Smith MT (1994) Normal and variant anatomy of the dural venous sinuses. Semin Ultrasound CT 15:499–519

    Article  Google Scholar 

  • Curnoe D, Green H (2013) Vault thickness in two Pleistocene Australian crania. J Archaeol Sci 40:1310–1318

    Article  Google Scholar 

  • Das S, Abd LA, Suhaimi FH, Othman FB, Yahaya MF, Ahmad F, Abdul HH (2008) An anatomico-radiological study of the grooves for occipital sinus in the posterior cranial fossa. Bratisl Med J 109:520–524

    Google Scholar 

  • Dawkins R (1989) The extended phenotype. Oxford University Press, Oxford

    Google Scholar 

  • Dean V (1995) Sinus and meningeal vessel pattern changes induced by artificial cranial deformation. Int J Osteoarchaeol 5:1–14

    Article  Google Scholar 

  • Del Papa MC, Perez SI (2007) The influence of artificial cranial vault deformation on the expression of cranial nonmetric traits: its importance in the study of evolutionary relationships. Am J Phys Anthropol 134:251–262

    Article  Google Scholar 

  • Derezinski C (1934) Variations of the middle meningeal artery in the middle cranial fossa. Dissertation, Loyola University, Chicago

    Google Scholar 

  • Diamond MK (1991) Homologies of the meningeal-orbital arteries of humans: a reappraisal. J Anat 178:223–241

    Google Scholar 

  • Dilenge D, Ascherl GF Jr (1980) Variations of the ophthalmic and middle meningeal arteries: relation to the embryonic stapedial artery. Am J Neoradiol 1:45–54

    Google Scholar 

  • Dora F, Zileli T (1980) Common variations of the lateral and occipital sinuses at the confluens sinuum. Neuroradiology 20:23–27

    Article  Google Scholar 

  • Drake R, Vogl AW, Mitchell AW (2013) Gray: Anatomía Básica. Elsevier España S.A, Barcelona

    Google Scholar 

  • Eichmann A, Le Noble F, Autiero M, Carmeliet P (2005) Guidance of vascular and neural network formation. Curr Opin Neurobiol 15:108–115

    Article  Google Scholar 

  • Eisová S, Rangel de Lázaro G, Píšová H, Pereira-Pedro S, Bruner E (2016) Parietal bone thickness and vascular diameters in adult modern humans: a survey on cranial remains. Anat Rec 299:888–896

    Article  Google Scholar 

  • Enlow DH (1968) The human face: an account of the postnatal growth and development of the craniofacial skeleton. Hoeber Medical Division, Harper & Row, New York

    Google Scholar 

  • Enlow DH (1990) Facial growth. WB Saunders Company, Philadelphia

    Google Scholar 

  • Ericson K, Hakansson S, Lofgren J (1979) Extravasation and arteriovenous shunting after epidural bleeding -a radiological study. Neuroradiology 17:239–244

    Article  Google Scholar 

  • Falk D (1986) Evolution of cranial blood drainage in hominids: enlarged occipital/marginal sinuses and emissary foramina. Am J Phys Anthropol 70:311–324

    Article  Google Scholar 

  • Falk D (1990) Brain evolution in Homo: the “radiator” theory. Behav Brain Sci 13:333–381. with peer commentary

    Article  Google Scholar 

  • Falk D (1993) Meningeal arterial patterns in great apes: implications for hominid vascular evolution. Am J Phys Anthropol 92:81–97

    Article  Google Scholar 

  • Falk D, Gage T (1997) Flushing the radiator? A reply to Braga Boesch. J Hum Evol 33:495–502

    Article  Google Scholar 

  • Falk D, Nicholls P (1992) Meningeal arteries in rhesus macaques (Macaca mulatta): implications for vascular evolution in anthropoids. Am J Phys Anthropol 89:299–308

    Article  Google Scholar 

  • García Gil O, Cambra-Moo O, Audije Gil J, Nacarino Meneses C, Rodríguez Barbero MA, Rascón Pérez J, González Martín A (2015) Investigating histomorphological variations in human cranial bones through ontogeny. C R Palevol. doi:10.1016/j.crpv.2015.04.006

  • García-González U, Cavalcanti D, Agrawal A, Gonzalez L, Wallace R, Spetzler RF, Preul MC (2009) The diploic venous system: surgical anatomy and neurosurgical implications. Neurosurg Focus 27(5):1–11

    Article  Google Scholar 

  • Gauld SC (1996) Allometric patterns of cranial bone thickness in fossil hominins. Am J Phys Anthropol 100:411–426

    Article  Google Scholar 

  • Georgiou C, Cassell MD (1992) The foramen meningo-orbitale and its relationship to the development of the ophthalmic artery. J Anat 180:119–125

    Google Scholar 

  • Gisel A (1964) Über die blutströmung im emissarium parietale des neugeborenen. Anat Ant 114:371–373

    Google Scholar 

  • Giuffrida-Ruggeri V (1904) La capacità del cranio nelle diverse popolazioni italiane antiche e moderne. Atti della Società Romana di Antropologia 10:240–278

    Google Scholar 

  • Giuffrida-Ruggeri V (1912) Über die endocranischen Furchen der Arteria meningea media beim Menschen. Z Morphol Anthropol 15:401–412

    Google Scholar 

  • Goebbel J (2013) Computed tomography. In: Czichos H (ed) Handbook of technical diagnostics: fundamentals and application to structures and systems. Springer ScienceBusiness Media, Berlin, pp 249–258

    Chapter  Google Scholar 

  • Goldman L (2007) Principles of CT and CT technology. J Nucl Med Tech 35:115–128

    Article  Google Scholar 

  • Goldsmith RS (1972) Biomechanics of head injury. In: Fung YC, Perrone N, Anliker M (eds) Biomechanics, its foundations and objective. Prentice-Hall, Englewood Cliffs, p 585

    Google Scholar 

  • Gray H (1913) Anatomy, descriptive and applied. Lea & Febiger, Philadelphia

    Google Scholar 

  • Gray H, Carter HV (1858) Anatomy: descriptive and surgical. John W. Parker and Son, London

    Google Scholar 

  • Grimaud-Hervé D (1997) Evolution de l’encéphale chez Homo erectus et Homo sapiens. Centre National de la Recherche Scientique, Paris

    Google Scholar 

  • Grimaud-Hervé D (2004) Endocranial vasculature. In: Holloway R, Broadfield DC, Yuan MS (eds) The human fossil record, Brain endocasts: the paleoneurological evidence, vol III. Wiley-Liss, New Jersey, pp 273–284

    Google Scholar 

  • Gunz P, Mitteroecker P, Neubauer S, Weber G, Bookstein F (2009) Principles for the virtual reconstruction of hominin crania. J Hum Evol 57:48–62

    Article  Google Scholar 

  • Hajdú J, Marton T, Kozsurek M, Pete B, Csapó Z, Beke A, Papp Z (2008) Prenatal diagnosis of abnormal course of umbilical vein and absent ductus venosus-report of three cases. Fetal Diagn Ther 23:136–139

    Article  Google Scholar 

  • Hartmann A, Hoyer S (2012) Cerebral blood flow and metabolism measurement. Springer ScienceBusiness Media, New York

    Google Scholar 

  • Hatipoglu HG, Ozcan HN, Hatipoglu US, Yuksel E (2008) Age, sex and body mass index in relation to calvarial diploe thickness and craniometric data on MRI. Forensic Sci Int 182:46–51

    Article  Google Scholar 

  • Hauser G, De Stefano GF (1985) Variations in form of the hypoglossal canal. Am J Phys Anthropol 67:7–11

    Article  Google Scholar 

  • Hauser G, De Stefano G (1989) Epigenetic variants of the human skull. Schweizerbart, Stuttgart

    Google Scholar 

  • Hershkovitz I, Greenwald C, Rotschild B, Latimer B, Dutour O, Jellema LM, Wish-Baratz S, Pap I, Lenoetti G (1999) The elusive diploic veins: anthropological and anatomical perspective. Am J Phys Anthropol 108:345–358

    Article  Google Scholar 

  • Horner F (1962) The technique of Transillumination of the skull. Am J Dis Child 103:183–184

    Google Scholar 

  • Hounsfield GN (1980) Computed medical imaging. Science 210:22–28

    Article  Google Scholar 

  • Hu HH, Campeau NG, Huston J, Kruger DG, Haider CR, Riederer SJ (2007) High-spatial-resolution contrast-enhanced MR angiography of the intracranial venous system with fourfold accelerated two-dimensional sensitivity encoding. Radiology 243:853–861

    Article  Google Scholar 

  • Hwang K, Kim J, Baik S (1999) The thickness of the skull in Korean adults. J Craniofac Surg 10:395–399

    Article  Google Scholar 

  • Isidro A, Gonzálvez LM, Arbiox A (2015) Brain vessels mummification in an individual of ancient Egypt. Cortex 63:217–219

    Article  Google Scholar 

  • Isler K, van Schaik CP (2009) The expensive brain: a framework for explaining evolutionary changes in brain size. J Hum Evol 57:392–400

    Article  Google Scholar 

  • Jefferson G, Stewart D (1928) On the veins of the diploe. Brit J Surg 16:70–88

    Article  Google Scholar 

  • Jessen C (2001) Selective brain cooling in mammals and birds. Jpn J Physiol 51:291–301

    Article  Google Scholar 

  • Jivraj K, Bhargava R, Aronyk K, Quateen A, Waljil A (2009) Diploic venous anatomy studied in-vivo by MRI. Clin Anat 22:296–301

    Article  Google Scholar 

  • Johnston KD, Walji AH, Fox RJ, Pugh JA, Aronyk KE (2007) Access to cerebrospinal fluid absorption sites by infusion into vascular channels of the skull diploë. J Neursurg 107:841–843

    Article  Google Scholar 

  • Jones FW (1912) On the grooves upon the Ossa Parietalia commonly said to be caused by the arteria Meningea media. J Anat Physiol 46:228–238

    Google Scholar 

  • Kaplan HA, Browder J, Knightly JJ, Rush BF Jr, Browder A (1972) Variations of the cerebral dural sinuses at the torcular herophili. Importance in radical neck dissection. Am J Surg 124:456–461

    Article  Google Scholar 

  • Karbowski J (2009) Thermodynamic constraints on neural dimensions, firing rates, brain temperature and size. J Comput Neurosci 27:415–436

    Article  Google Scholar 

  • Kennedy GE (1991) On the autapomorphic traits of Homo erectus. J Hum Evol 20:375–412

    Article  Google Scholar 

  • Kim LK, Ahn CS, Fernandes AE (2014) Mastoid emissary veins: anatomy and clinical relevance in plastic and reconstructive surgery. J Plast Reconstr Aesthet Surg 67:775–780

    Article  Google Scholar 

  • Kimball D, Kimball H, Tubbs RS, Loukas M (2015) Variant middle meningeal artery origin from the ophthalmic artery: a case report. Surg Radiol Anat 37:105–180

    Article  Google Scholar 

  • Kimbel WH (1984) Variation in the pattern of cranial venous sinuses and hominid phylogeny. Am J Phys Anthropol 63:243–263

    Article  Google Scholar 

  • Knott JF (1881) On the cerebral sinuses and their variation. J Anat Physiol 16:27–42

    Google Scholar 

  • Kochetkova VI (1978) Paleoneurology. VH Winston, Michigan

    Google Scholar 

  • Koenig WJ, Donovan JM, Pensler JM (1995) Cranial bone grafting in children. Plast Reconstr Surg 95:1–4

    Article  Google Scholar 

  • Kopuz C, Aydin ME, Kale A, Demir MT, Corumlu U, Kaya AH (2010) The termination of superior sagittal sinus and drainage patterns of the lateral, occipital at confluens sinuum in newborns: clinical and embryological implications. Surg Radiol Anat 32:827–833

    Article  Google Scholar 

  • Kresimir LI, Gluncic V, Marusic A (2001) Extracranial branches of the middle meningeal artery. Clin Anat 14:292–294

    Article  Google Scholar 

  • Kuhnen G (1995) Unilateral selective brain cooling. Pflugers Arch 430:1018–1020

    Article  Google Scholar 

  • Kunz AR, Iliadis C (2007) Hominid evolution of the arteriovenous system through the cranial base and its relevance for craniosynostosis. Childs Nerv Syst 23:1367–1377

    Article  Google Scholar 

  • Kurin DS (2013) Trepanation in South-Central Peru during the early late intermediate period (ca. AD 1000-1250). Am J Phys Anthropol 152:484–494

    Article  Google Scholar 

  • Kyrkanides S, Moore T, Miller JH, Tallents RH (2011) Melvin Moss’ function matrix theory revisited. Orthod Waves 70:1–7

    Article  Google Scholar 

  • Larsen CS (1997) Bioarchaeology: interpreting behavior from the human skeleton. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Le Gros Clark WE (1920) On the Pacchionian bodies. J Anat 55:40–48

    Google Scholar 

  • Lee W, Yoon A, Song M, Wilkinson C (2014) The archaeological contribution of forensic craniofacial reconstruction to a portrait drawing of a Korean historical figure. J Archaeol Sci 49:228–236

    Article  Google Scholar 

  • Leonard W, Snodgrass J, Robertson M (2007) Effects of brain evolution on human nutrition and metabolism. Annu Rev Nutr 27:311–327

    Article  Google Scholar 

  • Li Q, Pan SN, Yin YM, Li W, Chen ZA, Liu YH, Wu ZH, Guo QY (2011) Normal cranial bone marrow MR imaging pattern with age-related ADC value distribution. Eur J Radiol 80:471–477

    Article  Google Scholar 

  • Lieberman DE (1996) How and why humans grow thin skulls: experimental evidence for systemic cortical robusticity. Am J Phys Anthropol 101:217–236

    Article  Google Scholar 

  • Lieberman D, Ross C, Ravosa M (2000) The primate cranial base: ontogeny, function, and integration. Yearb Phys Anthropol 43:117–169

    Article  Google Scholar 

  • Lillie E, Urban J, Weaver A, Powers A, Stitzel J (2015) Estimation of skull table thickness with clinical CT and validation with microCT. J Anat 226:73–80

    Article  Google Scholar 

  • Louis RJ, Loukas M, Wartmann C, Tubbs R, Apaydin N, Gupta AA, Spentzouris G, Ysique JR (2009) Clinical anatomy of the mastoid and occipital emissary veins in a large series. Surg Radiol Anat 31:139–144

    Article  Google Scholar 

  • Lui Q, Rhoton AL (2001) Middle meningeal origin of the ophthalmic artery. Neurosurgery 49:401–407

    Google Scholar 

  • Luttenberg J (1959) Arteria meningica media (sulci arteriare meningicae mediae) a její projekce na povrch lebky. Československá morfologie 7(4):335–352

    Google Scholar 

  • Lynnerup N (2001) Cranial thickness in relation to age, sex and general body build in a Danish forensic sample. Forensic Sci Int 117:45–51

    Article  Google Scholar 

  • Lynnerup N, Astrup JG, Sejrsen B (2005) Thickness of the human cranial diploe in relation to age, sex, and general body build. Head Face Med 1:1–13

    Article  Google Scholar 

  • MacDonald ME, Frayne R (2015) Cerebrovascular MRI: a review of state-of-the-art approaches, methods and techniques. NMR Biomed 28:767–791

    Article  Google Scholar 

  • Mahesh M (2002) Search for isotropic resolution in CT from conventional through multiple-row detector. Radiographics 22:949–962

    Article  Google Scholar 

  • Mancall EL, Brock DG (2010) Gray’s clinical neuroanatomy: the anatomic basis for clinical neuroscience. Elsevier-Saunders, Philadelphia

    Google Scholar 

  • Manjunath K (2001) Anomalous origin of the middle meningeal artery—a review. J Anat Soc India 4:83–87

    Google Scholar 

  • Manzi G, Gracia A, Arsuaga JL (2000) Cranial discrete traits in the middle Pleistocene humans from Sima de los Huesos (Sierra de Atapuerca, Spain). Does hypostosis represent any increase in “ontogenetic stress” along the Neandertal lineage? J Hum Evol 38:425–446

    Article  Google Scholar 

  • Manzi G, Vienna A (1997) Cranial non-metric traits as indicators of hypostosis or hyperostosis. Riv Antropol 75:41–61

    Google Scholar 

  • Manzi G, Vienna A, Hauser G (1996) Developmental stress and cranial hypostosis by epigenetic trait occurrence and distribution: an exploratory study on the Italian Neandertals. J Hum Evol 30:511–527

    Article  Google Scholar 

  • Marcozzi V (1942) L’arteria meningea negli nomini recenti, nel Sinantropo, e nelle Scimmie. Riv Antropol 34:407–436

    Google Scholar 

  • Marsh HE (2013) Beyond thick versus thin: mapping cranial vault thickness patterns in recent Homo sapiens. University of Iowa, Iowa

    Google Scholar 

  • Marsot-Dupuch K, Gayet-Delacroix M, Elmaleh-Breges M, Bonneville F, Lasjuanias P (2001) The petrossquamosal sinus: CT and MRI findings of a rare emissary vein. Am J Neuroradiol 22:1186–1193

    Google Scholar 

  • Martínez-Maza C, Rosas A, García-Vargas S (2006) Bone paleohistology and human evolution. J Anthropol Sci 84:33–52

    Google Scholar 

  • Matiegka J (1923) Sulci venosi diluviálních lebek z Předmostí. Antropologie 1:31–38

    Google Scholar 

  • McLennan JE, Rosenbaum AE, Hauhton VM (1974) Internal carotid origins of the middle meningeal artery. The ophthalmic-middle meningeal and stapedial-middle meningeal arteries. Neuroradiology 29:265–275

    Article  Google Scholar 

  • Menegaz RA, Sublett SV, Figueroa SD, Hoffman TJ, Ravosa MJ, Aldridge K (2010) Evidence for the influence of diet on cranial form and robusticity. Anat Rec 293:630–641

    Article  Google Scholar 

  • Mitra I, Duraiswamy M, Benning J, Joy H (2015) Imaging of focal calvarial lesions. Clin Radiol 71:1–10

    Google Scholar 

  • Moore D (2015) The developing genome: an introduction to behavioral epigenetics. Oxford University Press, New York

    Google Scholar 

  • Moreira-Gonzalez A, Papay F, Zins J (2006) Calvarial thickness and its relation to cranial bone harvest. Plast Reconstr Surg 117:1964–1971

    Article  Google Scholar 

  • Mortazavi M, Denning M, Yalcin B, Shoja M, Loukas M, Tubbs R (2013) The intracranial bridging veins: a comprehensive review of their history, anatomy, histology, pathology, and neurosurgical implications. Childs Nerv Syst 29:1073–1078

    Article  Google Scholar 

  • Moss ML (1968) A theoretical analysis of the functional matrix. Acta Biotheor 18:195–202

    Article  Google Scholar 

  • Moss ML, Young RW (1960) A functional approach to craniology. Am J Phys Anthropol 18:281–292

    Article  Google Scholar 

  • Müller U, Baker L, Yeung E (2013) Embodiment and Epigenesis: theoretical and methodological issues in understanding the role of biology within the relational developmental system part B: ontogenetic dimensions. Adv Child Dev Behav 45:39–66

    Article  Google Scholar 

  • Murlimanju BV, Prabhu LV, Pai MM, Jaffar M, Saralaya VV, Tonse M, Prameela MD (2011) Occipital emissary foramina in human skulls: an anatomical investigation with reference to surgical anatomy of emissary veins. Turk Neurosurg 21:36–38

    Google Scholar 

  • Nagesh KR, Bastia BK, Menon A, Saralaya KM (2005) Reconstruction of skull by endocranial groove – a case report. J Indian Acad Forensic Med 27:55–56

    Google Scholar 

  • Nanney D (1958) Epigenetic control systems. Proc Natl Acad Sci U S A 44:712–717

    Article  Google Scholar 

  • Nawrocki SP (1991) A biomechanical model of cranial vault thickness in archaic Homo. Binghamton University, New York

    Google Scholar 

  • Neubauer S, Gunz P, Hublin JJ (2009) The pattern of endocranial ontogenetic shape changes in humans. J Anat 215:240–255

    Article  Google Scholar 

  • Neubauer S, Gunz P, Hublin JJ (2010) Endocranial shape changes during growth in chimpanzees and humans: a morphometric analysis of unique and shared aspects. J Hum Evol 59:555–566

    Article  Google Scholar 

  • Nikita E (2015) A critical review of the mean measure of divergence and Mahalanobis distances using artificial data and new approaches to the estimation of biodistances employing nonmetric traits. Am J Phys Anthropol 157:284–294

    Article  Google Scholar 

  • O’Loughlin V (1996) Comparative endocranial vascular changes due to Craniosynostosis and artificial cranial deformation. Am J Phys Anthropol 101:369–385

    Article  Google Scholar 

  • O’Loughlin V (2004) Effects of different kinds of cranial deformation on the incidence of Wormian bones. Am J Phys Anthropol 123:146–155

    Article  Google Scholar 

  • Ossenberg NS (1976) Within and between race distances in population studies based on discrete traits of the human skull. Am J Phys Anthropol 45:701–715

    Article  Google Scholar 

  • Patel N (2009) Venous anatomy and imaging of the first centimeter. Semin Ultrasound CT MRI 30:513–524

    Article  Google Scholar 

  • Patel N, Kirmi O (2009) Anatomy and imaging of the normal meninges. Semin Ultrasound CT MRI 30:559–564

    Article  Google Scholar 

  • Peña-Melián A, Rosas A, García-Tabernero A, Bastir M, De La Rasilla M (2011) Paleoneurology of two new Neandertal occipitals from El Sidrón (Asturias, Spain) in the context of Homo endocranial evolution. Anat Rec 294:1370–1381

    Article  Google Scholar 

  • Percival CJ, Richtsmeier JT (2013) Angiogenesis and intramembranous osteogenesis. Dev Dyn 242:909–922

    Article  Google Scholar 

  • Peterson J, Dechow PC (2002) Material properties of the inner and outer cortical tables of the human parietal bone. Anat Rec 268:7–15

    Article  Google Scholar 

  • Peterson J, Dechow PC (2003) Material properties of the human cranial vault and zygoma. Anat Rec 274A:785–797

    Article  Google Scholar 

  • Píšová H, Rangel de Lázaro G, Velemínský P, Bruner E (2017) Craniovascular traits in anthropology and evolution: from bones to vessels. J Anthropol Sci. doi:10.4436/JASS.9503

  • Raciborski A (1841) Histoire des découvertes relatives au système veineux: envisagé sous le rapport anatomique, physiologique, pathologique et thérapeutique, depuis Morgagni jusqu’à nos jours. J-B Baillière, Paris

    Google Scholar 

  • Rangel de Lázaro G, de la Cuétara JM, Píšová H, Lorenzo C, Bruner E (2016) Diploic vessels and computed tomography: segmentation and comparison in modern humans and fossil hominids. Am J Phys Anthropol 159(2):313–324

    Article  Google Scholar 

  • Rango M, Arighi A, Bresolin N (2012) Brain temperature: what do we know? Neuroreport 23:483–487

    Article  Google Scholar 

  • Rea P (2015) Essential clinical anatomy of the nervous system. Academic Press Elsevier, London

    Google Scholar 

  • Ribas G, Yasuda A, Ribas E, Nishikuni K, Rodrigues A (2006) Surgical anatomy of microneurosurgical sulcal key-points. Neurosurgery 59:177–208

    Google Scholar 

  • Richtsmeier J, Aldridge K, de Leon V, Panchal J, Kane A, Marsh JL, Yan P, Cole TM (2006) Phenotypic integration of neurocranium and brain. J Exp Zool 306B:360–378

    Article  Google Scholar 

  • Rilling J (2008) Neuroscientific approaches and applications within anthropology. Am J Phys Anthropol S47:2–32

    Article  Google Scholar 

  • Rilling JK (2014) Comparative primate neuroimaging: insights into human brain evolution. Trends Cogn Sci 18:45–55

    Article  Google Scholar 

  • Robert J (2004) Embryology, epigenesis and evolution: taking development seriously. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Roche A (1953) Increase in cranial thickness during growth. Hum Biol 25:81–92

    Google Scholar 

  • Rosas A, Peña-Melián A, Garcia-Tabernero A, Bastir M, De La Rasilla M, Fortea J (2008) Endocranial occipito-temporal anatomy of SD-1219 from the Neandertal El Sidron site (Asturias, Spain). Anat Rec 291:502–512

    Article  Google Scholar 

  • Ross AH, Jantz RL, McCormick WF (1998) Cranial thickness in American females and males. J Forensic Sci 43:267–272

    Article  Google Scholar 

  • Rothman D (1937) The endocranial course of the middle meningeal artery in American whites and American negroes. Am J Phys Anthropol 22:425–435

    Article  Google Scholar 

  • Royle G, Motson R (1973) An anomalous origin of the middle meningeal artery. J Neurol Neurosurg Psychiatry 36:874–876

    Article  Google Scholar 

  • Saban R (1980) Les empreintes vasculaires endocrâniennes (v.v. méningées moyennes) chez l’Homme de l’Acheuléen en Europe et en Afrique. Anthropogie XVII:133–152

    Google Scholar 

  • Saban R (1983) Les veines méningées moyennes des australopithèques. Bull Mém Soc d’Anthrop XIII:313–324

    Article  Google Scholar 

  • Saban R (1995) Image of the human fossil brain: endocranial casts and meningeal vessels in young and adult subjects. In: Changeaux P, Chavaillon J (eds) Origins of the human brain. Clarendon Press, Oxford, pp 11–38

    Google Scholar 

  • Sabancıoğulları V, Koşar Mİ, Şalk İ, Erdil FH, Öztoprak İ, Çimen M (2012) Diploe thickness and cranial dimensions in males and females in mid-Anatolian population: an MRI study. Forensic Sci Int 219:289e1–289e7

    Article  Google Scholar 

  • San Millán Ruíz D, Fasel JH, Rufenacht DA, Gailloud P (2004) The sphenoparietal sinus of Breschet: does it exist? An anatomic study. Am J Neuroradiol 25:112–120

    Google Scholar 

  • San Millán Ruíz D, Gailloud P, Rüfenacht DA, Delavelle J, Henry F, Fasel JHD (2002) The craniocervical venous system in relation to cerebral venous drainage. Am J Neuroradiol 23:1500–1508

    Google Scholar 

  • Schapira AH (2007) Neurology and clinical neuroscience. Mosby-Elsevier, Philadelphia

    Google Scholar 

  • Scheuer L, Black S (2000) Developmental Juvenile Osteology. Elservier-Academic Press, London

    Google Scholar 

  • Schmidt R, Thews G (2013) Human physiology. Springer ScienceBusiness Media, New York

    Google Scholar 

  • Seeram E (2015) Computed tomography: physical principles, clinical applications, and quality control. Elsevier Health Sciences, St. Louis

    Google Scholar 

  • Shapiro R, Robinson F (1967) The foramina of the middle fossa: a phylogenetic, anatomic and pathologic study. Am J Roentgenol Radium Ther Nucl Med 101:779–794

    Article  Google Scholar 

  • Short L, Khambay B, Ayoub A, Erolin C, Rynn C, Wilkinson C (2014) Validation of a computer modelled forensic facial reconstruction technique using CT data from live subjects: a pilot study. Forensic Sci Int 237:147e1–147e8

    Article  Google Scholar 

  • Silbergleit R, Quint DJ, Mehta BA, Patel SC, Metes JJ, Noujaim SE (2000) The persistent stapedial artery. Am J Neuroradiol 21:572–577

    Google Scholar 

  • Singh D, Naganawa S, Inoue Y (2004) Anatomical variations of occipital bone impressions for dural venous sinuses arond the torcular Herophili, with special reference to the consideration of clinical significance. Surg Radiol Anat 26:480–487

    Article  Google Scholar 

  • Skrzat J, Brzegowy P, Walocha J, Wojciechowski W (2004) Age dependent changes of the diploe in the human skull. Folia Morphol (Warsz) 63:67–70

    Google Scholar 

  • Slice DE (2005) Modern morphometrics in physical anthropology. Springer, New York

    Book  Google Scholar 

  • Sotero R, Iturria-Medina Y (2011) From blood oxygenation level dependent BOLD signals to brain temperature maps. Bull Math Biol 73:2731–2747

    Article  Google Scholar 

  • Sperber G (2001) Craniofacial development. BC Decker, Hamilton

    Google Scholar 

  • Spoor F, Jeffery N, Zonneveld F (2000) Using diagnostic radiology in human evolutionary. J Anat 197:61–76

    Article  Google Scholar 

  • Sutton MD (2008) Review. Tomographic techniques for fossils. Proc Biol Sci 275:1587–1593

    Article  Google Scholar 

  • Teegen WR, Schultz M (1994) Epidural hematoma in fetuses, newborns and infants from the early medieval settlements of Elisenhof and Starigard-Oldenburg (Germany). Homo 45(suppl):S126

    Google Scholar 

  • Testut L (1893) Traité d’anatomie humaine. Octave Doin, Paris

    Google Scholar 

  • Toriumi H, Shimizu T, Shibata M, Unekawa M, Tomita Y, Tomita M, Suzuki N (2011) Developmental and circulatory profile of the diploic veins. Microvasc Res 81:97–102

    Article  Google Scholar 

  • Torres-Lagares D, Tulasne JF, Pouget C, Llorens A, Saffar JL, Lesclous P (2010) Structure and remodelling of the human parietal bone: an age and gender histomorphometric study. J Craniomaxillofac Surg 38:325–330

    Article  Google Scholar 

  • Touzani O, MacKenzie ET (2007) Anatomy and physiology of cerebral and spinal cord circulation. In: Schapira AH (ed) Neurology and clinical neuroscience. Elsevier Health Sciences, Philadelphia, pp 540–549

    Google Scholar 

  • Tsutsumi S, Nakamura M, Tabuchi T, Yasumoto Y, Ito M (2013) Calvarial diploic venous channels: an anatomic study using high-resolution magnetic resonance imaging. Surg Radiol Anat 35:935–941

    Article  Google Scholar 

  • Tubbs RS, Bosmia AN, Shoja MM, Loukas M, Curé JK, Cohen-Gadol AA (2011) The oblique occipital sinus: a review of anatomy and imaging characteristics. Surg Radiol Anat 33:747–749

    Article  Google Scholar 

  • Tubbs RS, Walker AM, Demerdash A, Matusz P, Loukas M, Cohen-Gadol AA (2015) Skull base connections between the middle meningeal and internal carotid arteries. Childs Nerv Syst 31:1515–1520

    Article  Google Scholar 

  • Van Speybroeck L (2002) From epigenesis to epigenetics: the case of C. H. Waddington. Ann N Y Acad Sci 981:61–81

    Article  Google Scholar 

  • Vlček E, Druga R, Šmahel Z, Bigoni L, Velemínská J (2006) The skull of Wolfgang Amadeus Mozart predicates of his death. Acta Chir Plast 48:133–140

    Google Scholar 

  • Voie A, Dirnbachera M, Fisher D, Hölsche T (2014) Parametric mapping and quantitative analysis of the human calvarium. Comput Med Imaging Graph 38:675–682

    Article  Google Scholar 

  • Waddington C (2012) The epigenotype. Int J Epidemiol 41:10–13

    Article  Google Scholar 

  • Weber GW (2014) Another link between archaeology and anthropology: virtual anthropology. Digit Appl Archaeol Cult Herit 1:3–11

    Google Scholar 

  • Weber GW (2015) Virtual anthropology. Yearb Phys Anthropol 156:22–42

    Article  Google Scholar 

  • Weinstein M, Duchesneau P, Weinstein A (1977) Computed angiotomography. Am J Roentgenol 129:699–701

    Article  Google Scholar 

  • Wind J (1984) Computerized x-ray tomography of fossil hominid skulls. Am J Phys Anthropol 63:265–282

    Article  Google Scholar 

  • Woolsey TA, Hanaway J, Gado MH (2008) The brain atlas: a visual guide to the human central nervous system. Wiley, New Jersey

    Google Scholar 

  • Wu XJ, Schepartz LA, Falk D, Liu W (2006) Endocranial cast of Hexian Homo erectus from South China. Am J Phys Anthropol 130:445–454

    Article  Google Scholar 

  • Wua X, Schepartzb L (2009) Application of computed tomography in paleoanthropological research. Prog Nat Sci 19:913–921

    Article  Google Scholar 

  • Wysocki J (2008) The size of venous foramina and skull capacity in man and selected vertebrate species. Folia Morphol (Warsz) 67:98–103

    Google Scholar 

  • Wysocki J, Reymond J, Skarzyński H, Wróbel B (2006) The size of selected human skull foramina in relation to skull capacity. Folia Morphol (Warsz) 65:301–308

    Google Scholar 

  • Yang Z, Guo Z (2015) A three-dimensional digital atlas of the dura mater based on human head MRI. Brain Res 1602:160–167

    Article  Google Scholar 

  • Zamir M (1999) On fractal properties of arterial trees. J Theor Biol 97:517–526

    Article  Google Scholar 

  • Zamir M (2001) Fractal dimensions and multifractality in vascular branching. J Theor Biol 212:517–526

    Article  Google Scholar 

  • Zasler ND, Katz D, Zafonte RD (2006) Brain injury medicine: principles and practice. Demos Medical Publishing, New York

    Google Scholar 

  • Zelditch M, Swidersky D, Sheets H, Fink W (2004) Geometric morphometrics for biologists. Elsevier, San Diego

    Google Scholar 

  • Zenker W, Kubik S (1996) Brain cooling in humans—anatomical considerations. Anat Embryol 193:1–13

    Article  Google Scholar 

  • Zollikofer CPE, Ponce de León MS (2013) Pandora’s growing box: inferring the evolution and development of hominin brains from endocasts. Evol Anthropol 22:20–33

    Article  Google Scholar 

  • Zollikofer CPE, Ponce de León MS (2005) Virtual reconstruction: a primer in computer-assisted paleontology and biomedicine. Wiley-Interscience, Hoboken

    Google Scholar 

  • Zonoobi D, Kassim A, Shen W (2009) Vasculature segmentation in MRA images using gradient compensated geodesic active contours. J Sign Process Syst 54:171–181

    Article  Google Scholar 

Download references

Acknowledgments

This study is funded by the Wenner-Gren Foundation International Collaborative Research Grant (ICRG) “Cranial anatomy, anthropology, and the vascular system.” GRL is funded by the International Erasmus Mundus Doctorate in Quaternary and Prehistory consortium (IDQP). HP is supported by NAKI DF12P01OVV021 and SE by the Leonardo da Vinci programme of the European Commission. EB is funded by the Spanish Government (CGL2012-38434-C03-02). The NESPOS platform provided the modern samples used in this study. The specimens used in the images are kept at the National Museum in Prague (Czech Republic), Museum of Anthropology G. Sergi at the University of La Sapienza in Rome (Italy), and University of Burgos (Spain). We would like to thank Ana Sofia Pereira-Pedro and José Manuel de la Cuétara for their collaboration. Special thanks are also due to Marteyn Van Gasteren for the administrative support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gizéh Rangel de Lázaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Japan KK

About this chapter

Cite this chapter

Rangel de Lázaro, G., Eisová, S., Píšová, H., Bruner, E. (2018). The Endocranial Vascular System: Tracing Vessels. In: Bruner, E., Ogihara, N., Tanabe, H. (eds) Digital Endocasts. Replacement of Neanderthals by Modern Humans Series. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56582-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56582-6_6

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56580-2

  • Online ISBN: 978-4-431-56582-6

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics