Skip to main content

The Evolution of Avian Intelligence and Sensory Capabilities: The Fossil Evidence

  • Chapter
  • First Online:
Digital Endocasts

Abstract

Crocodiles and birds are the only living representatives of Archosauria, a once diverse clade of vertebrates that mastered terrestrial, aerial and aquatic environments during the Mesozoic. Because the braincases of archosaurs are largely ossified, the group has particularly benefited from advances in non-destructive visualisation of endocranial structures over the past two decades. Here, we focus on the neurosensory evolution in the avian lineage of the Archosauria, a group in which the Bauplan of most representatives is optimised to accommodate the functional demands of flight. Neurosensory evolution in birds included a trend towards an enlargement of the telencephalon relative to the rest of the brain, an increased vestibular system sensitivity and probably also a widening of auditory frequency range and an increased reliance on visual stimuli. Despite a relatively smooth surface, bird endocasts provide crucial information on the evolution of a critical structure, the Wulst, which underwent significant enlargement during the Cenozoic and is found with highly variable form in all extant birds. With our increasing awareness of avian cognitive capacity and neural structure, the evolution of the brain in the sauropsid lineage represents an increasingly useful comparative tool against which the development of the synapsid lineage brain of primates can be assessed. Current refinements in quantification of brain structures in extant birds are improving the reliability of the information derived from the external surface of endocasts. This, in turn, should result in a better understanding of the palaeoneurology of extinct birds and other dinosaurs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ali F, Zelenitsky D, Therrien F, Weishampel D (2008) Homology of the “ethmoid complex” of tyrannosaurids and its implications for the reconstruction of the olfactory apparatus of non-avian theropods. J Vertebr Paleontol 28:123–133

    Article  Google Scholar 

  • Balanoff AM, Bever GS, Norell MA (2014) Reconsidering the avian nature of the oviraptorosaur brain (Dinosauria: Theropoda). PLoS One 9(12):e113559

    Article  Google Scholar 

  • Balanoff AM, Bever GS, Rowe TB, Norell MA (2013) Evolutionary origins of the avian brain. Nature 7465:93–96

    Article  Google Scholar 

  • Bennett PM, Harvey PH (1985) Relative brain size and ecology in birds. J Zool 207:151–169

    Article  Google Scholar 

  • Bhullar BAS, Bever GS (2009) An archosaur-like laterosphenoid in early turtles (Reptilia: Pantestudines). Breviora 518:1–11

    Article  Google Scholar 

  • Brasier MD, Norman DB, Liu AG, Cotton LJ, Hiscocks JEH, Garwood RJ, Antcliffe JB, Wacey D (2016) Remarkable preservation of brain tissues in an early cretaceous iguanodontian dinosaur. Geol Soc Lond Spec Publ 448:SP448.3

    Google Scholar 

  • Brochu CA (2003) Osteology of Tyrannosaurus rex: insights from a nearly complete skeleton and high-resolution computed tomographic analysis of the skull. J Vertebr Paleontol 22(suppl 4):1–138

    Google Scholar 

  • Bruner E (2003) Fossil traces of human thought: palaeoneurology and the evolution of the genus. Homo J Anthropol Sci 81:29–56

    Google Scholar 

  • Brusatte SL, Muir A, Young MT, Walsh SA, Steel L, Witmer LM (2016) The braincase and neurosensory anatomy of an early Jurassic marine crocodylomorph: implications for crocodilian sinus evolution and sensory transitions. Anat Rec 299:1511–1530

    Article  Google Scholar 

  • Chatterjee S (1991) Cranial anatomy and relationships of a new Triassic bird from Texas. Philos Trans R Soc Lond B 332:277–342

    Article  Google Scholar 

  • Christiansen P, Fariña RA (2004) Mass prediction in theropod dinosaurs. Hist Biol 16:85–92

    Article  Google Scholar 

  • Clayton NS, Dally JM, Emery NJ (2007) Social cognition by food-caching corvids: the western scrub-jay as a natural psychologist. Philos Trans R Soc Lond B 362:507–522

    Article  Google Scholar 

  • Corfield JR, Wild JM, Hauber ME, Parsons S, Kubke MF (2008) Evolution of brain size in the Palaeognath lineage, with an emphasis on New Zealand ratites. Brain Behav Evol 71:87–99

    Article  Google Scholar 

  • Cuvier G (1822) Recherches sur les Ossemens fossiles, vol 3, 2nd edn. G. Dufour & E. d’Ocagne, Paris

    Google Scholar 

  • Dechaseaux C (1970) Moulages endocraniens d’oiseaux de l’Éocène Supérieur du Bassin de Paris. Ann Paléontol 56:69–72

    Google Scholar 

  • Domínguez Alonso P, Milner AC, Ketcham RA, Cookson MJ, Rowe TB (2004) The avian nature of the brain and inner ear of Archaeopteryx. Nature 430:666–669

    Article  Google Scholar 

  • Dubbeldam JL (1989) Shape and structure of the avian brain, an old problem revisited. Acta Morphol Neerl Scand 27:33–43

    Google Scholar 

  • Dubbeldam JL (1998) Birds. In: Nieuwenhuys R, Ten Donkelaar HJ, Nicholson C (eds) The central nervous system of vertebrates, vol 3. Springer, Berlin, pp 1525–1636

    Chapter  Google Scholar 

  • Dunning JB (2008) CRC handbook of avian body masses, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Edinger T (1929) Die fossilen Gehirne. Ergeb Anat Entwicklungsgesch 28:1–249

    Google Scholar 

  • Elżanowski A, Galton PM (1991) Braincase of Enaliornis, an early Cretaceous bird from England. J Vertebr Paleontol 11:90–107

    Article  Google Scholar 

  • Emery NJ, Clayton NS (2004) The mentality of crows: convergent evolution of intelligence in corvids and apes. Science 306:1903–1907

    Article  Google Scholar 

  • Franzosa JW (2004) Evolution of the brain in theropoda (Dinosauria). PhD dissertation, The University of Texas at Austin, Austin

    Google Scholar 

  • Fuchs R, Winkler H, Bingman VP, Ross JD, Bernroider G (2014) Brain geometry and its relation to migratory behavior in birds. J Adv Neuro Res 1:1–9

    Article  Google Scholar 

  • Gratiolet P (1858) Sur l’encéphale du Caïnotherium commune, Brav. Extraits p v séances, Soc philom Paris 23:19–23

    Google Scholar 

  • Hall MI, Iwaniuk AN, Gutiérrez-Ibáñez C (2009) Optic foramen morphology and activity pattern in birds. Anat Rec 292:1827–1845

    Article  Google Scholar 

  • Hoch E (1975) Amniote remnants from the eastern part of the lower Eocene North Sea basin. Colloq Int CNRS 218:543–562

    Google Scholar 

  • Hunt G, Gray RD (2007) Parallel tool industries in New Caledonian crows. Biol Lett 3:173–175

    Article  Google Scholar 

  • Hurlburt GR, Ridgely RC, Witmer LM (2013) Relative size of brain and cerebrum in tyrannosaurid dinosaurs: an analysis using brain-endocast quantitative relationships in extant alligators. In: Parrish JM, Molnar RE, Currie PJ, Koppelhus EB (eds) Tyrannosaurid paleobiology. Indiana University Press, Bloomington, pp 134–155

    Google Scholar 

  • Isler K, van Schaik C (2006) Costs of encephalisation: the energy trade-off hypothesis tested on birds. J Hum Evol 51:228–243

    Article  Google Scholar 

  • Iwaniuk AN, Heesy CP, Hall MI, Wylie DRW (2008) Relative Wulst volume is correlated with orbit orientation and binocular visual field in birds. J Comp Physiol A 194:267–282

    Article  Google Scholar 

  • Iwaniuk AN, Hurd PL (2005) The evolution of cerebrotypes in birds. Brain Behav Evol 65:215–230

    Article  Google Scholar 

  • Iwaniuk AN, Nelson J (2002) Can endocranial volume be used as an estimate of brain size in birds? Can J Zool 80:16–23

    Article  Google Scholar 

  • Iwaniuk AN, Nelson JE, James HF, Olson SL (2004) A comparative test of the correlated evolution of flightlessness and relative brain size in birds. J Zool 263:317–327

    Article  Google Scholar 

  • Jarvis ED, Güntürkün O, Bruce L, Csillag A, Karten H, Kuenzel W, Medina L, Paxinos G, Perkel DJ, Shimizu T, Striedter G, Wild JM, Ball GF, Dugas-Ford J, Durand SE, Hough GE, Husband S, Kubikova L, Lee DW, Mello CV, Powers A, Siang C, Smulders TV, Wada K, White SA, Yamamoto K, Yu J, Reiner A, Butler AB (2005) Avian brains and a new understanding of vertebrate brain evolution. Nat Rev Neurosci 6:151–159

    Article  Google Scholar 

  • Jerison HJ (1973) Evolution of the brain and intelligence. Academic, London

    Google Scholar 

  • Kawabe S, Shimokawa T, Miki H, Matsuda S, Endo H (2013) Variation in avian brain shape: relationship with size and orbital shape. J Anat 223:495–508

    Google Scholar 

  • Knoll F (1997) La boîte crânienne d’un théropode (Saurischia) du Jurassique des Vaches Noires: ostéologie et paléoneurologie. DEA dissertation, Université des Sciences et Techniques du Languedoc, Montpellier

    Google Scholar 

  • Knoll F, Buffetaut E, Bülow M (1999) A theropod braincase from the Jurassic of the Vaches Noires cliffs (Normandy, France): osteology and palaeoneurology. Bull Soc Géol Fr 170:103–109

    Google Scholar 

  • Knoll F, Witmer LM, Ortega F, Ridgely RC, Schwarz-Wings D (2012) The braincase of the basal sauropod dinosaur Spinophorosaurus and 3D reconstructions of the cranial endocast and inner ear. PLoS One 7(1):e30060

    Article  Google Scholar 

  • Knoll F, Witmer LM, Ridgely RC, Ortega F, Sanz JL (2015) A new titanosaurian braincase from the cretaceous “Lo Hueco” locality in Spain sheds light on neuroanatomical evolution within Titanosauria. PLoS One 10(10):e0138233

    Article  Google Scholar 

  • Ksepka DT, Balanoff AM, Walsh S, Revan A, Ho A (2012) Evolution of the brain and sensory organs in Sphenisciformes: new data from the stem penguin Paraptenodytes antarcticus. Zool J Linnean Soc 166:202–219

    Google Scholar 

  • Kundrát M (2007) Avian-like attributes of a virtual brain model of the oviraptorid theropod Conchoraptor gracilis. Naturwissenschaften 94:499–504

    Article  Google Scholar 

  • Lefebvre L, Reader SM, Sol D (2004) Brains, innovations and evolution in birds and primates. Brain Behav Evol 63:233–246

    Article  Google Scholar 

  • Marsh OC (1884) Principal characters of American Jurassic dinosaurs: part VIII. Am J Sci 27:329–340

    Article  Google Scholar 

  • Marsh OC (1886) Dinocerata. Monogr US Geol Surv 10:1–243

    Google Scholar 

  • Martin GR (1985) Eye. In: King AS, McLelland J (eds) Form and function in birds. Academic, New York, pp 311–373

    Google Scholar 

  • Martin GR (2009) What is binocular vision for?: a birds’ eye view. J Vis 9:1–19

    Article  Google Scholar 

  • Mehlhorn J, Hunt GR, Gray RD, Rehkämper G, Güntürkün O (2010) Tool-making new Caledonian crows have large associative brain areas. Brain Behav Evol 75:63–70

    Article  Google Scholar 

  • Milner AC, Walsh SA (2009) Avian brain evolution: new data from Palaeogene birds (Lower Eocene) from England. Zool J Linnean Soc 155:198–219

    Article  Google Scholar 

  • Mlíkovský J (1980) Zwei Vogelgehirne aus dem Miozän Böhmens. Čas Miner Geol 25:409–413

    Google Scholar 

  • Mouritsen H, Feenders G, Liedvogel M, Wada K, Jarvis ED (2005) Night-vision brain area in migratory songbirds. Proc Natl Acad Sci U S A 102:8339–8344

    Article  Google Scholar 

  • Oken L (1819) Pterodactylus longi- et brevirostris. Isis 2:1788–1798

    Google Scholar 

  • Olkowicz S, Kocourek M, Lučan RK, Porteš M, Fitch WT, Herculano-Houzel S, Němec P (2016) Birds have primate-like numbers of neurons in the forebrain. Proc Natl Acad Sci U S A 113:7255–7260

    Article  Google Scholar 

  • Osmólska H (2004) Evidence on relation of brain to endocranial cavity in oviraptorid dinosaurs. Acta Palaeontol Pol 49:321–324

    Google Scholar 

  • Owen R (1842) Report on British fossil reptiles: Pt II. Rep Brit Assoc Adv Sci 11:60–204

    Google Scholar 

  • Owen R (1871) On Dinornis (Part XVI.): containing notices of the internal organs of some species, with a description of the brain and some nerves and muscles of the head of the Apteryx australis. Trans Zool Soc Lond 7:381–396

    Article  Google Scholar 

  • Owen R (1879) Memoirs on the extinct wingless birds of New Zealand, with an appendix on those of England, Australia, Newfoundland, Mauritius, and Rodriguez, vol 2. J van Voorst, London

    Google Scholar 

  • Pearson R (1972) The avian brain. Academic, London

    Google Scholar 

  • Petkov CI, Jarvis ED (2012) Birds, primates, and spoken language origins: behavioural phenotypes and neurobiological substrates. Front Evol Neurosci 4:1–24

    Article  Google Scholar 

  • Picasso MBJ, Tambussi C, Dozo MT (2009) Neurocranial and brain anatomy of a late Miocene eagle (Aves, Accipitridae) from Patagonia. J Vertebr Paleontol 29:831–836

    Article  Google Scholar 

  • Portmann A, Stingelin W (1961) The central nervous system. In: Marshall AJ (ed) The biology and comparative physiology of birds, vol 2. Academic, New York, pp 1–36

    Google Scholar 

  • Pradel A, Langer M, Maisey JG, Geffard-Kuriyama D, Cloetens P, Janvier P, Tafforeau P (2009) Skull and brain of a 300-million-year-old chimaeroid fish revealed by synchrotron holotomography. Proc Natl Acad Sci U S A 106:5224–5228

    Article  Google Scholar 

  • Prior H, Schwarz A, Güntürkün O (2008) Mirror-induced behaviour in the magpie (Pica pica): evidence of self-recognition. PLoS Biol 6(8):e202

    Article  Google Scholar 

  • Proffitt JV, Clarke JA, Scofield RP (2016) Novel insights into early neuroanatomical evolution in penguins from the oldest described penguin brain endocast. J Anat 229:228–238

    Article  Google Scholar 

  • Reiner A (2009) Avian evolution: from Darwin’s finches to a new way of thinking about avian forebrain organization and behavioural capabilities. Biol Lett 5:122–124

    Article  Google Scholar 

  • Reiner A, Yamamoto K, Karten HJ (2005) Organization and evolution of the avian forebrain. Anat Rec A 287:1080–1102

    Article  Google Scholar 

  • Salzen EA, Parker DM (1975) Arousal and orientation functions of the avian telencephalon. In: Wright P, Caryl PG, Vowles DM (eds) Neural and endocrine aspects of behavior in birds. Elsevier, Amsterdam, pp 205–242

    Google Scholar 

  • Sobral G, Sookias RB, Bhullar BAS, Smith R, Butler RJ, Müller J (2016) New information on the braincase and inner ear of Euparkeria capensis broom: implications for diapsid and archosaur evolution. R Soc Open Sci 3:160072

    Article  Google Scholar 

  • Stingelin W (1957) Vergleichend morphologische untersuchungen am Vorderhirn der Vögel auf cytologischer und cytoarchitektonischer Grundlage. Helbing and Lichtenhahn, Basel

    Google Scholar 

  • Tambussi CP, Degrange FJ, Ksepka DT (2015) Endocranial anatomy of Antarctic Eocene stem penguins: implications for sensory system evolution in Sphenisciformes (Aves). J Vertebr Paleontol 35:e981635

    Article  Google Scholar 

  • Tebbich S, Taborsky M, Fessl B, Blomqvist M (2001) Do woodpecker finches acquire tool-use by social learning? Proc R Soc Lond B 268:2189–2193

    Article  Google Scholar 

  • Walsh SA, Iwaniuk AN, Knoll MA, Bourdon E, Barrett PM, Milner AC, Nudds R, Abel RL, Dello Sterpaio P (2013) Avian cerebellar floccular fossa size is not a proxy for flying ability in birds. PLoS One 8(6):e67176

    Article  Google Scholar 

  • Walsh SA, Knoll MA (2011) Directions in palaeoneurology. Spec Pap Palaeontol 86:263–279

    Google Scholar 

  • Walsh SA, Milner AC (2011a) Evolution of the avian brain and senses. In: Dyke G, Kaiser G (eds) Living dinosaurs: the evolutionary history of modern birds. Wiley, Chichester, pp 282–305

    Chapter  Google Scholar 

  • Walsh SA, Milner AC (2011b) Halcyornis toliapicus (Aves: Lower Eocene, England) indicates advanced neuromorphology in Mesozoic Neornithes. J Syst Palaeontol 9:173–181

    Article  Google Scholar 

  • Walsh SA, Milner AC, Bourdon E (2016) A reappraisal of Cerebavis cenomanica (Aves, Ornithurae), from Melovatka, Russia. J Anat 229:215–227

    Article  Google Scholar 

  • Walsh SA, Zhe-Xi L, Barrett P (2014) Modern imaging techniques as a window to prehistoric auditory worlds. In: Köppl C, Manley G (eds) Insights from comparative hearing research. Springer, New York, pp 227–261

    Google Scholar 

  • Witmer LM, Chatterjee S, Franzosa J, Rowe T (2003) Neuroanatomy of flying reptiles and implications for flight, posture and behavior. Nature 425:950–953

    Article  Google Scholar 

  • Witmer LM, Ridgely RC (2007) Evolving an on-board flight computer: brains, ears, and exaptation in the evolution of birds and other theropod dinosaurs. J Morphol 268:1150

    Google Scholar 

  • Witmer LM, Ridgely RC, Dufeau DL, Semones MC (2008) Using CT to peer into the past: 3D visualisation of the brain and ear regions of birds, crocodiles and nonavian dinosaurs. In: Endo H, Frey R (eds) Anatomical imaging: towards a new morphology. Springer, Tokyo, pp 67–87

    Chapter  Google Scholar 

  • Yosef R, Yosef N (2010) Cooperative hunting in brown-necked raven (Corvus rufficollis) on Egyptian mastigure (Uromastyx aegyptius). J Ethol 28:385–388

    Article  Google Scholar 

  • Zhou Z (2004) The origin and early evolution of birds: discoveries, disputes, and perspectives from fossil evidence. Naturwissenschaften 91:455–471

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Brusatte for kindly making available images of the endocast of Steneosaurus cf. gracilirostris segmented by A. Muir (Edinburgh University) as well as R. Ridgely (Ohio University) for the digital endocast of the indeterminate Spanish lithostrotian. Two anonymous reviewers provided insightful comments. FK’s research was funded by the European Union (PIEFGA-2013-624969); SAW’s research was supported by NERC grant NE/H012176/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Knoll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Japan KK

About this chapter

Cite this chapter

Walsh, S.A., Knoll, F. (2018). The Evolution of Avian Intelligence and Sensory Capabilities: The Fossil Evidence. In: Bruner, E., Ogihara, N., Tanabe, H. (eds) Digital Endocasts. Replacement of Neanderthals by Modern Humans Series. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56582-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56582-6_5

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56580-2

  • Online ISBN: 978-4-431-56582-6

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics