Skip to main content

Evolution of the Occipital Lobe

  • Chapter
  • First Online:
Digital Endocasts

Abstract

In this chapter, we review and summarize the current body of knowledge on the anatomy, function, and evolution of the occipital lobes in humans, with reference to the brains of other key species. The anatomical landmarks that can be used to delineate the occipital lobe have been defined and explored in detail, and its functional significance in regard to visual processing has been elucidated. We give an overview of the current understanding about the evolution of the occipital lobe in primates from comparative perspective and present findings related to cortical reorganization, reduction, folding, and gyrification in the primate lineage over evolutionary time. Implications for further directions of inquiry that might shed light on less clear issues are also suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Albright TD, Desimone R, Gross CG (1984) Columnar organization of directionally selective cells in visual area MT of the macaque. J Neurophysiol 51:16–31

    Article  Google Scholar 

  • Allen JS, Damasio H, Grabowski TJ (2002) Normal neuroanatomical variation in the human brain: an MRI-volumetric study. Am J Phys Anthropol 118:341–358

    Article  Google Scholar 

  • Allen JS, Bruss J, Damasio H (2006) Looking for the lunate sulcus: a magnetic resonance imaging study in modern humans. Anat Rec (Hoboken) 288:867–876

    Article  Google Scholar 

  • Amunts K, Zilles K (2015) Architectonic mapping of the human brain beyond Brodmann. Neuron 88:1086–1107

    Article  Google Scholar 

  • Amunts K, Malikovic A, Mohlberg H, Schormann T, Zilles K (2000) Brodmann’s areas 17 and 18 brought into stereotaxic space-where and how variable? NeuroImage 11:66–84

    Article  Google Scholar 

  • Andrews TJ, Halpern SD, Purves D (1997) Correlated size variations in human visual cortex, lateral geniculate nucleus, and optic tract. J Neurosci 17:2859–2868

    Google Scholar 

  • Annese J, Pitiot A, Dinov ID, Toga AW (2004) A myelo-architectonic method for the structural classification of cortical areas. NeuroImage 21:15–26

    Article  Google Scholar 

  • Annese J, Gazzaniga MS, Toga AW (2005) Localization of the human cortical visual area MT based on computer aided histological analysis. Cereb Cortex 15:1044–1053

    Article  Google Scholar 

  • Armstrong E, Zilles K, Curtis M, Schleicher A (1991) Cortical folding, the lunate sulcus and the evolution of the human brain. J Hum Evol 20:341

    Article  Google Scholar 

  • Bailey P, Von Bonin G (1951) The Isocortex of man. University of Illinois Press, Urbana

    Google Scholar 

  • Bailey P, Von Bonin G, McCulloch WS (1950) The isocortex of chimpanzee. University of Illinois Press, Urbana

    Google Scholar 

  • Balzeau A, Gilissen E, Grimaud-Herve D (2012) Shared pattern of endocranial shape asymmetries among great apes, anatomically modern humans, and fossil hominins. PLoS One 7:e29581

    Article  Google Scholar 

  • Barton RA (2007) Evolutionary specialization in mammalian cortical structure. J Evol Biol 20:1504–1511

    Article  Google Scholar 

  • Barton RA, Harvey PH (2000) Mosaic evolution of brain structure in mammals. Nature 405:1055–1058

    Article  Google Scholar 

  • Bishop KM, Goudreau G, O’leary DD (2000) Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. Science 288:344–349

    Article  Google Scholar 

  • Braak H (1977) The pigment architecture of the human occipital lobe. Anat Embryol (Berl) 150:229–250

    Article  Google Scholar 

  • Breitmeyer BG (2014) Contributions of magno- and parvocellular channels to conscious and non-conscious vision. Philos Trans R Soc Lond Ser B Biol Sci 369:20130213

    Article  Google Scholar 

  • Bridge H, Clare S, Jenkinson M, Jezzard P, Parker AJ, Matthews PM (2005) Independent anatomical and functional measures of the V1/V2 boundary in human visual cortex. J Vis 5:93–102

    Article  Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, Leipzig

    Google Scholar 

  • Brodmann K (1925) Vergleiehende Lokalisationslehre der Grosshirnrinde. J. A. Barth, Leipzig

    Google Scholar 

  • Bruner E, Lozano M, Lorenzo C (2016) Visuospatial integration and human evolution: the fossil evidence. J Anthropol Sci 94:81–97

    Google Scholar 

  • Campbell MJ, Morrison JH (1989) Monoclonal antibody to neurofilament protein (SMI-32) labels a subpopulation of pyramidal neurons in the human and monkey neocortex. J Comp Neurol 282:191–205

    Article  Google Scholar 

  • Clarke S (1993) Callosal connections and functional subdivision of the human occipital cortex. In: Gulyas B, Ottoson D, Roland PE (eds) Functional organization of the human visual cortex, 1st edn. Perhamon Press, Oxford

    Google Scholar 

  • Clarke S, Miklossy J (1990) Occipital cortex in man: organization of callosal connections, related myelo- and cytoarchitecture, and putative boundaries of functional visual areas. J Comp Neurol 298:188–214

    Article  Google Scholar 

  • Conroy GC, Smith RJ (2007) The size of scalable brain components in the human evolutionary lineage: with a comment on the paradox of Homo floresiensis. HOMO – J Comp Hum Biol 58:1–12

    Article  Google Scholar 

  • Coogan TA, Burkhalter A (1993) Hierarchical organization of areas in rat visual cortex. J Neurosci 13:3749–3772

    Google Scholar 

  • Cragg BG (1967) The density of synapses and neurones in the motor and visual areas of the cerebral cortex. J Anat 101:639–654

    Google Scholar 

  • Daniel PM, Whitteridge D (1961) The representation of the visual field on the cerebral cortex in monkeys. J Physiol 159:203–221

    Article  Google Scholar 

  • De Juan Romero C, Bruder C, Tomasello U, Sanz-Anquela JM, Borrell V (2015) Discrete domains of gene expression in germinal layers distinguish the development of gyrencephaly. EMBO J 34:1859–1874

    Article  Google Scholar 

  • De Sousa AA, Sherwood CC, Mohlberg H, Amunts K, Schleicher A, Macleod CE, Hof PR, Frahm H, Zilles K (2010a) Hominoid visual brain structure volumes and the position of the lunate sulcus. J Hum Evol 58:281–292

    Article  Google Scholar 

  • De Sousa AA, Sherwood CC, Schleicher A, Amunts K, Macleod CE, Hof PR, Zilles K (2010b) Comparative cytoarchitectural analyses of striate and extrastriate areas in hominoids. Cereb Cortex 20:966–981

    Article  Google Scholar 

  • De Sousa AA, Sherwood CC, Hof PR, Zilles K (2013) Lamination of the lateral geniculate nucleus of catarrhine primates. Brain Behav Evol 81:93–108

    Article  Google Scholar 

  • Dehay C, Giroud P, Berland M, Killackey H, Kennedy H (1996) Contribution of thalamic input to the specification of cytoarchitectonic cortical fields in the primate: effects of bilateral enucleation in the fetal monkey on the boundaries, dimensions, and gyrification of striate and extrastriate cortex. J Comp Neurol 367:70–89

    Article  Google Scholar 

  • Deyoe EA, Van Essen DC (1988) Concurrent processing streams in monkey visual cortex. Trends Neurosci 11:219–226

    Article  Google Scholar 

  • Deyoe EA, Hockfield S, Garren H, Van Essen DC (1990) Antibody labeling of functional subdivisions in visual cortex: cat-301 immunoreactivity in striate and extrastriate cortex of the macaque monkey. Vis Neurosci 5:67–81

    Article  Google Scholar 

  • Deyoe EA, Felleman DJ, Van Essen DC, McClendon E (1994) Multiple processing streams in occipitotemporal visual cortex. Nature 371:151–154

    Article  Google Scholar 

  • Deyoe EA, Carman GJ, Bandettini P, Glickman S, Wieser J, Cox R, Miller D, Neitz J (1996) Mapping striate and extrastriate visual areas in human cerebral cortex. Proc Natl Acad Sci U S A 93:2382–2386

    Article  Google Scholar 

  • Dominy NJ, Lucas PW (2001) Ecological importance of trichromatic vision to primates. Nature 410:363–366

    Article  Google Scholar 

  • Fagot J, Deruelle C (1997) Processing of global and local visual information and hemispheric specialization in humans (Homo sapiens) and baboons (Papio papio). J Exp Psychol Hum Percept Perform 23:429–442

    Article  Google Scholar 

  • Fagot J, Tomonaga M, Deruelle C (2001) Processing of the global and local dimensions of visual hierarchical stimuli by humans (Homo sapiens), chimpanzees (Pan troglodytes), and baboons (Papio papio). In: Matsuzawa T (ed) Primate origins of human cognition and behavior. Springer, New York

    Google Scholar 

  • Felleman DJ, Van Essen DC (1987) Receptive field properties of neurons in area V3 of macaque monkey extrastriate cortex. J Neurophysiol 57:889–920

    Article  Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    Article  Google Scholar 

  • Ferrera VP, Nealey TA, Maunsell JH (1994) Responses in macaque visual area V4 following inactivation of the parvocellular and magnocellular LGN pathways. J Neurosci 14:2080–2088

    Google Scholar 

  • Filimonoff IN (1932) Ãœber die Variabilität der Großhirnrindenstruktur. Mitteilung II Regio occipitalis beim erwachsenen Menschen. J Psychol Neurol 44:1–96

    Google Scholar 

  • Filimonoff IN (1933a) Ãœber die Variabilität der Großhirnrindenstruktur. Mitteilung III Regio occipitalis bei der höheren und niederen Affen. J Psychol Neurol 45:69–137

    Google Scholar 

  • Filimonoff IN (1933b) Ãœber die Variabilität der Großhirnrindenstruktur. Mitteilung III Regio occipitalis bei der höheren und niederen Affen. J Psychol Neurol 45:69–137

    Google Scholar 

  • Finlay BL, Darlington RB, Nicastro N (2001) Developmental structure in brain evolution. Behav Brain Sci 24:263–278. discussion 278–308

    Article  Google Scholar 

  • Fukuda K, Saito N, Yamamoto M, Tanaka C (1994) Immunocytochemical localization of the alpha-, beta I-, beta II- and gamma-subspecies of protein kinase C in the monkey visual pathway. Brain Res 658:155–162

    Article  Google Scholar 

  • Gattass R, Rosa MG, Sousa AP, Pinon MC, Fiorani Junior M, Neuenschwander S (1990) Cortical streams of visual information processing in primates. Braz J Med Biol Res 23:375–393

    Google Scholar 

  • Gerhardt E (1940) Die Cytoarchitektonik des Isocortex parietalis beim Menschen. J Psychol Neurol 49:367–419

    Google Scholar 

  • Ghazanfar AA, Santos LR (2004) Primate brains in the wild: the sensory bases for social interactions. Nat Rev Neurosci 5:603–616

    Article  Google Scholar 

  • Glaser JS (2008) Romancing the chiasm: vision, vocalization, and virtuosity. J Neuroophthalmol 28:131–143

    Article  Google Scholar 

  • Glickstein M, Rizzolatti G (1984) Francesco Gennari and the structure of the cerebral cortex. Trends Neurosci 7:464–467

    Article  Google Scholar 

  • Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25

    Article  Google Scholar 

  • Goodchild AK, Martin PR (1998) The distribution of calcium-binding proteins in the lateral geniculate nucleus and visual cortex of a New World monkey, the marmoset, Callithrix jacchus. Vis Neurosci 15:625–642

    Article  Google Scholar 

  • Gratiolet PL (1854) Mémoire sur les plis cérébraux de l’homme et des primates. A. Bertrand, Paris

    Google Scholar 

  • Haab O (1882) Ueber cortex – Hemianopie. Monatsbl f Augenhlkde 20:141–153

    Google Scholar 

  • Hanazawa A, Komatsu H (2001) Influence of the direction of elemental luminance gradients on the responses of V4 cells to textured surfaces. J Neurosci 21:4490–4497

    Google Scholar 

  • Hendry SH, Yoshioka T (1994) A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. Science 264:575–577

    Article  Google Scholar 

  • Herculano-Houzel S, Collins CE, Wong PY, Kaas JH (2007) Cellular scaling rules for primate brains. Proc Nat Acad Sci U S Am 104:3562–3567

    Article  Google Scholar 

  • Hof, PR (2000) Neurochemical and cellular specializations in the mammalian neocortex reflect phylogenetic relationships: evidence from primates, cetaceans, and artiodactyls. Brain Behav Evol 300

    Google Scholar 

  • Hof PR, Morrison JH (1990) Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer’s disease: II. Primary and secondary visual cortex. J Comp Neurol 301:55–64

    Article  Google Scholar 

  • Hof PR, Morrison JH (1995) Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: a quantitative immunohistochemical analysis. J Comp Neurol 352:161–186

    Article  Google Scholar 

  • Hof PR, Ungerleider LG, Webster MJ, Gattass R, Adams MM, Sailstad CA, Morrison JH (1996) Neurofilament protein is differentially distributed in subpopulations of corticocortical projection neurons in the macaque monkey visual pathways. J Comp Neurol 376:112–127

    Article  Google Scholar 

  • Holloway RL (1966) Cranial capacity, neural reorganization, and hominid evolution – search for more suitable parameters. Am Anthropol 68:103–121

    Article  Google Scholar 

  • Holloway RL (1968) The evolution of the primate brain: some aspects of quantitative relations. Brain Res 7:121–172

    Article  Google Scholar 

  • Holloway RL (1992) The failure of the Gyrification index (Gi) to account for volumetric reorganization in the evolution of the human brain. J Hum Evol 22:163–170

    Article  Google Scholar 

  • Holloway RL, De Lacoste-lareymondie MC (1982) Brain endocast asymmetry in pongids and hominids: some preliminary findings on the paleontology of cerebral dominance. Am J Phys Anthropol 58:101–110

    Article  Google Scholar 

  • Holloway RL, Broadfield DC, Yuan MS (2003) Morphology and histology of chimpanzee primary visual striate cortex indicate that brain reorganization predated brain expansion in early hominid evolution. Anat Rec 273A:594–602

    Article  Google Scholar 

  • Holmes G (1918) Disturbances of vision by cerebral lesions. Br J Ophthalmol 2:353–384

    Article  Google Scholar 

  • Hopkins WD, Marino L (2000) Asymmetries in cerebral width in nonhuman primate brains as revealed by magnetic resonance imaging (MRI). Neuropsychologia 38:493–499

    Article  Google Scholar 

  • Horel JA (1994) Local and global perception examined by reversible suppression of temporal cortex with cold. Behav Brain Res 65:157–164

    Article  Google Scholar 

  • Horton JC, Hoyt WF (1991) The representation of the visual field in human striate cortex. A revision of the classic Holmes map. Arch Ophthalmol 109:816–824

    Article  Google Scholar 

  • Hubel DH, Wiesel TN (1959) Receptive fields of single neurones in the cat’s striate cortex. J Physiol 148:574–591

    Article  Google Scholar 

  • Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol 195:215–243

    Article  Google Scholar 

  • Hughes A, Vaney DI (1982) The organization of binocular cortex in the primary visual area of the rabbit. J Comp Neurol 204:151–164

    Article  Google Scholar 

  • Humphrey GK, Goodale MA, Bowen CV, Gati JS, Vilis T, Rutt BK, Menon RS (1997) Differences in perceived shape from shading correlate with activity in early visual areas. Curr Biol 7:144–147

    Article  Google Scholar 

  • Inouye T (1909) Die Sehstörungen bei Schussverletzungen der kortikalen Sehsphäre: nach Beobachtungen an Verwundeten der letzten japanischen Kriege. W. Engelmann, Leipzig

    Google Scholar 

  • Jerison HJ (1975) Fossil evidence of evolution of the human brain. Annu Rev Anthropol 4:27–58

    Article  Google Scholar 

  • Jones EG, Hendry SH (1989) Differential calcium binding protein immunoreactivity distinguishes classes of relay neurons in monkey thalamic nuclei. Eur J Neurosci 1:222–246

    Article  Google Scholar 

  • Kaas JH (1993) The organization of visual cortex in primates: problems, conclusions, and the use of comparative studies in understanding brain evolution. In: Gulyas B, Ottoson D, Roland PE (eds) Functional organization of the human visual cortex, 1st edn. Perhamon Press, Oxford

    Google Scholar 

  • Kaas JH (2006) The evolution of visual cortex in primates. In: Kremers J (ed) The primate visual system. John Wiley & Sons, Ltd., Chichester, UK, pp 267–283

    Chapter  Google Scholar 

  • Karlen SJ, Krubitzer L (2009) Effects of bilateral enucleation on the size of visual and nonvisual areas of the brain. Cereb Cortex 19:1360–1371

    Article  Google Scholar 

  • Kourtzi Z, Tolias AS, Altmann CF, Augath M, Logothetis NK (2003) Integration of local features into global shapes: monkey and human FMRI studies. Neuron 37:333–346

    Article  Google Scholar 

  • Kravitz DJ, Saleem KS, Baker CI, Mishkin M (2011) A new neural framework for visuospatial processing. Nat Rev Neurosci 12:217–230

    Article  Google Scholar 

  • Krubitzer L, Campi KL, Cooke DF (2011) All rodents are not the same: a modern synthesis of cortical organization. Brain Behav Evol 78:51–93

    Article  Google Scholar 

  • Kuffler SW (1953) Discharge patterns and functional organization of mammalian retina. J Neurophysiol 16:37–68

    Article  Google Scholar 

  • Kujovic M, Zilles K, Malikovic A, Schleicher A, Mohlberg H, Rottschy C, Eickhoff SB, Amunts K (2013) Cytoarchitectonic mapping of the human dorsal extrastriate cortex. Brain Struct Funct 218:157–172

    Article  Google Scholar 

  • Lacoste-Royal G, Mathieu M, Nalbantoglu J, Julien JP, Gauthier S, Gauvreau D (1990) Lack of association between two restriction fragment length polymorphisms in the genes for the light and heavy neurofilament proteins and Alzheimer’s disease. Can J Neurol Sci 17:302–305

    Article  Google Scholar 

  • Lashley KS, Clark G (1946) The cytoarchitecture of the cerebral cortex of Ateles – a critical examination of architectonic studies. J Comp Neurol 85:223–305

    Article  Google Scholar 

  • Le May M (1976) Morphological cerebral asymmetries of modern man, fossil man and nonhuman primates. Ann N Y Acad Sci 280:349–366

    Article  Google Scholar 

  • Le May M, Billig MS, Geschwind N (1982) Asymmetries in the brains and skulls of nonhuman primates. In: Armstrong E, Falk D (eds) Primate brain evolution: methods and concepts. Plenum Press, New York

    Google Scholar 

  • Leventhal AG, Rodieck RW, Dreher B (1981) Retinal ganglion cell classes in the old world monkey: morphology and central projections. Science 213:1139–1142

    Article  Google Scholar 

  • Livingstone M, Hubel D (1988) Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240:740–749

    Article  Google Scholar 

  • Lucas PW, Darvell BW, Lee PK, Yuen TD, Choong MF (1998) Colour cues for leaf food selection by long-tailed macaques (Macaca fascicularis) with a new suggestion for the evolution of trichromatic colour vision. Folia Primatol (Basel) 69:139–152

    Article  Google Scholar 

  • Lucas PW, Dominy NJ, Riba-Hernandez P, Stoner KE, Yamashita N, Loria-Calderon E, Petersen-Pereira W, Rojas-Duran Y, Salas-Pena R, Solis-Madrigal S, Osorio D, Darvell BW (2003) Evolution and function of routine trichromatic vision in primates. Evolution Int J Org Evolution 57:2636–2643

    Article  Google Scholar 

  • Lueck CJ, Zeki S, Friston KJ, Deiber MP, Cope P, Cunningham VJ, Lammertsma AA, Kennard C, Frackowiak RS (1989) The colour centre in the cerebral cortex of man. Nature 340:386–389

    Article  Google Scholar 

  • Lyon DC, Kaas JH (2002) Evidence for a modified V3 with dorsal and ventral halves in macaque monkeys. Neuron 33:453–461

    Article  Google Scholar 

  • Malikovic A, Amunts K, Schleicher A, Mohlberg H, Eickhoff SB, Wilms M, Palomero-Gallagher N, Armstrong E, Zilles K (2007) Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: a probabilistic, stereotaxic map of area hOc5. Cereb Cortex 17:562–574

    Article  Google Scholar 

  • Malikovic A, Vucetic B, Milisavljevic M, Tosevski J, Sazdanovic P, Milojevic B, Malobabic S (2012) Occipital sulci of the human brain: variability and morphometry. Anat Sci Int 87:61–70

    Article  Google Scholar 

  • Malikovic A, Amunts K, Schleicher A, Mohlberg H, Kujovic M, Palomero-gallagher N, Eickhoff SB, Zilles K (2016) Cytoarchitecture of the human lateral occipital cortex: mapping of two extrastriate areas hOc4la and hOc4lp. Brain Struct Funct 221:1877–1897

    Article  Google Scholar 

  • McDaniel WF, Wall TT (2013) Visuospatial functions in the rat following injuries to striate, peristriate, and parietal neocortical sites. Psychobiology 16:251–260

    Google Scholar 

  • McKeefry DJ, Zeki S (1997) The position and topography of the human colour centre as revealed by functional magnetic resonance imaging. Brain 120(Pt 12):2229–2242

    Article  Google Scholar 

  • Nassi JJ, Callaway EM (2009) Parallel processing strategies of the primate visual system. Nat Rev Neurosci 10:360–372

    Article  Google Scholar 

  • Newton I (1966) Opticks: or a treatise of the reflexions, refractions, inflexions and colours of light. Also two treatises of the species and magnitude of curvilinear figures. Sam. Smith and Benj. Walford, London. 1704, Culture et civilisation

    Google Scholar 

  • Nonaka-Kinoshita M, Reillo I, Artegiani B, Martinez-Martinez MA, Nelson M, Borrell V, Calegari F (2013) Regulation of cerebral cortex size and folding by expansion of basal progenitors. EMBO J 32:1817–1828

    Article  Google Scholar 

  • Orban GA, Van Essen D, Van Duffel W (2004) Comparative mapping of higher visual areas in monkeys and humans. Trends Cogn Sci 8:315–324

    Article  Google Scholar 

  • Pasupathy A, Connor CE (2002) Population coding of shape in area V4. Nat Neurosci 5:1332–1338

    Article  Google Scholar 

  • Pearce JM (2006) Louis Pierre Gratiolet (1815–1865): the cerebral lobes and fissures. Eur Neurol 56:262–264

    Article  Google Scholar 

  • Pearce E, Stringer C, Dunbar RI (2013) New insights into differences in brain organization between Neanderthals and anatomically modern humans. Proc Biol Sci 280:20130168

    Article  Google Scholar 

  • Perrett DI, Smith PA, Potter DD, Mistlin AJ, Head AS, Milner AD, Jeeves MA (1985) Visual cells in the temporal cortex sensitive to face view and gaze direction. Proc R Soc Lond B Biol Sci 223:293–317

    Article  Google Scholar 

  • Preuss TM (2005) Evolutionary specializations of primate brain systems. In: Ravoso MJ, Dagosto M (eds) Primate origins and adaptations. Kluwer Academic/Plenum Press, New York

    Google Scholar 

  • Preuss TM, Coleman GQ (2002) Human-specific organization of primary visual cortex: alternating compartments of dense Cat-301 and calbindin immunoreactivity in layer 4A. Cereb Cortex 12:671–691

    Article  Google Scholar 

  • Preuss TM, Qi H, Kaas JH (1999) Distinctive compartmental organization of human primary visual cortex. Proc Natl Acad Sci U S A 96:11601–11606

    Article  Google Scholar 

  • Raczkowski D, Rosenquist AC (1983) Connections of the multiple visual cortical areas with the lateral posterior-pulvinar complex and adjacent thalamic nuclei in the cat. J Neurosci 3:1912–1942

    Google Scholar 

  • Riegele L (1931) Die Cytoarchitektonik der Felder der Broca’schen Region. J Psychol Neurol 42:496–514

    Google Scholar 

  • Rodiek RW (1988) The primate retina. In: Stelis HD, Erwin J (eds) Comparative primate biology, Neurosciences, vol 4. Liss, New York

    Google Scholar 

  • Rosa MG, Tweedale R (2005) Brain maps, great and small: lessons from comparative studies of primate visual cortical organization. Philos Trans R Soc Lond B 360:665–691

    Article  Google Scholar 

  • Rottschy C, Eickhoff SB, Schleicher A, Mohlberg H, Kujovic M, Zilles K, Amunts K (2007) Ventral visual cortex in humans: cytoarchitectonic mapping of two extrastriate areas. Hum Brain Mapp 28:1045–1059

    Article  Google Scholar 

  • Scheperjans F, Hermann K, Eickhoff SB, Amunts K, Schleicher A, Zilles K (2008) Observer-independent cytoarchitectonic mapping of the human superior parietal cortex. Cereb Cortex 18:846–867

    Article  Google Scholar 

  • Schleicher A, Zilles K (1990) A quantitative approach to cytoarchitectonics: analysis of structural inhomogeneities in nervous tissue using an image analyser. J Microsc 157:367–381

    Article  Google Scholar 

  • Schleicher A, Amunts K, Geyer S, Morosan P, Zilles K (1999) Observer-independent method for microstructural parcellation of cerebral cortex: a quantitative approach to cytoarchitectonics. NeuroImage 9:165–177

    Article  Google Scholar 

  • Schultz AH (1940) The size of the orbit and of the eye in primates. Am J Phys Anthropol 26:389–408

    Article  Google Scholar 

  • Schwarzkopf DS, Song C, Rees G (2011) The surface area of human V1 predicts the subjective experience of object size. Nat Neurosci 14:28–30

    Article  Google Scholar 

  • Semendeferi K, Damasio H (2000) The brain and its main anatomical subdivisions in living hominoids using magnetic resonance imaging. J Hum Evol 38:317–332

    Article  Google Scholar 

  • Sereno M, Allman JM (1991) Cortical visual areas in mammals. In: Leventhal AG (ed) The neural basis of visual function. Macmillan, London

    Google Scholar 

  • Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RB (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:889–893

    Article  Google Scholar 

  • Sherwood CC, Hof PR (2007) The evolution of neuron types and cortical histology in apes and humans. In: Kaas JH, Preuss TM (eds) Evolution of nervous systems, The Evolution of Primate Nervous Systems, vol 4. Academic Press, Oxford

    Google Scholar 

  • Sherwood CC, Lee PW, Rivara CB, Holloway RL, Gilissen EP, Simmons RM, Hakeem A, Allman JM, Erwin JM, Hof PR (2003) Evolution of specialized pyramidal neurons in primate visual and motor cortex. Brain Behav Evol 61:28–44

    Article  Google Scholar 

  • Sherwood CC, Holloway RL, Erwin JM, Hof PR (2004) Cortical orofacial motor representation in old world monkeys, great apes, and humans. II. Stereologic analysis of chemoarchitecture. Brain Behav Evol 63:82–106

    Article  Google Scholar 

  • Sherwood CC, Stimpson CD, Raghanti MA, Wildman DE, Uddin M, Grossman LI, Goodman M, Redmond JC, Bonar CJ, Erwin JM, Hof PR (2006) Evolution of increased glia-neuron ratios in the human frontal cortex. Proc Natl Acad Sci U S A 103:13606–13611

    Article  Google Scholar 

  • Sherwood CC, Raghanti MA, Stimpson CD, Bonar CJ, De Sousa AA, Preuss TM, Hof PR (2007) Scaling of inhibitory interneurons in areas V1 and V2 of anthropoid primates as revealed by calcium-binding protein immunohistochemistry. Brain Behav Evol 69:176–195

    Article  Google Scholar 

  • Stout D, Toth N, Schick K, Stout J, Hutchins G (2000) Stone tool-making and brain activation: position emission tomography (PET) studies. J Archaeol Sci 27:1215–1223

    Article  Google Scholar 

  • Tallinen T, Chung JY, Rousseau F, Girard N, Lefevre J, Mahadevan L (2016) On the growth and form of cortical convolutions. Nat Phys, advance online publication

    Google Scholar 

  • Thurlow GA, Cooper RM (1988) Metabolic activity in striate and extrastriate cortex in the hooded rat: contralateral and ipsilateral eye input. J Comp Neurol 274:595–607

    Article  Google Scholar 

  • Toga AW, Thompson PM, Mori S, Amunts K, Zilles K (2006) Towards multimodal atlases of the human brain. Nat Rev Neurosci 7:952–966

    Article  Google Scholar 

  • Tomonaga M (2001) Investigating visual perception and cognition in chimpanzees (Pan troglodytes) through visual search and related tasks: from basic to complex processes. In: Matsuzawa T (ed) Primate origins of human cognition and behavior. Springer, Tokyo, pp 55–86

    Google Scholar 

  • Tootell RB, Taylor JB (1995) Anatomical evidence for MT and additional cortical visual areas in humans. Cereb Cortex 5:39–55

    Article  Google Scholar 

  • Tootell RB, Mendola JD, Hadjikhani NK, Ledden PJ, Liu AK, Reppas JB, Sereno MI, Dale AM (1997) Functional analysis of V3A and related areas in human visual cortex. J Neurosci 17:7060–7078

    Google Scholar 

  • Tusa RJ, Palmer LA, Rosenquist AC (1978) The retinotopic organization of area 17 (striate cortex) in the cat. J Comp Neurol 177:213–235

    Article  Google Scholar 

  • Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT Press, Cambridge, MA

    Google Scholar 

  • Van Duffel W, Fize D, Mandeville JB, Nelissen K, Van Hecke P, Rosen BR, Tootell RB, Orban GA (2001) Visual motion processing investigated using contrast agent-enhanced fMRI in awake behaving monkeys. Neuron 32:565–577

    Article  Google Scholar 

  • Van Essen DC (1985) Functional organization of the primate visual cortex. In: Peters A, Jones EG (eds) Cerebral cortex. Plenum Press, New York

    Google Scholar 

  • Van Essen DC (2004) Organization of visual areas in macaque and human cerebral cortex. In: Chalupa L, Werner J (eds) The visual neurosciences. MIT Press, Cambridge, MA

    Google Scholar 

  • Van Essen DC, Dierker DL (2007) Surface-based and probabilistic atlases of primate cerebral cortex. Neuron 56:209–225

    Article  Google Scholar 

  • Van Essen DC, Zeki SM (1978) The topographic organization of rhesus monkey prestriate cortex. J Physiol 277:193–226

    Article  Google Scholar 

  • Van Essen DC, Newsome WT, Bixby JL (1982) The pattern of interhemispheric connections and its relationship to extrastriate visual areas in the macaque monkey. J Neurosci 2:265–283

    Google Scholar 

  • Van Essen DC, Anderson CH, Felleman DJ (1992) Information processing in the primate visual system: an integrated systems perspective. Science 255:419–423

    Article  Google Scholar 

  • Vater A, Heinicke JC (1723) Dissertatio qua visus vitia duo rarissima: alterum duplicati, alterum dimidiati physiologice et pathologice considerata exponuntur

    Google Scholar 

  • Von Economo C (1929) The cytoarchitectonics of the human cortex. Oxford University Press, Oxford

    Google Scholar 

  • Von Economo C, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Springer, Vienna

    Google Scholar 

  • Yan T, Jin F, Wu J (2009) Correlated size variations measured in human visual cortex V1/V2/V3 with functional MRI. In: Zhong N, Li K, Lu S, Chen L (eds) Brain informatics: international conference, BI 2009 Beijing, China, October 22–24, 2009 proceedings. Springer Berlin Heidelberg, Berlin

    Google Scholar 

  • Yoshioka T, Hendry SH (1995) Compartmental organization of layer IVA in human primary visual cortex. J Comp Neurol 359:213–220

    Article  Google Scholar 

  • Zeki S (2003) Improbable areas in the visual brain. Trends Neurosci 26:23–26

    Article  Google Scholar 

  • Zeki SM (2004) Improbable areas in color vision. In: Chalupa LM, Werner JS (eds) The visual neurosciences. MIT Press, Cambridge, MA

    Google Scholar 

  • Zilles K, Clarke S (1997) Architecture, connectivity, and transmitter receptors of human extrastraite visual cortex. In: Rockland KS, Kaas JH, Peters A (eds) Extrastriate cortex in primates. Plenum Press, New York

    Google Scholar 

  • Zilles K, Palomero-Gallagher N (2001) Cyto-, myelo-, and receptor architectonics of the human parietal cortex. NeuroImage 14:S8–20

    Article  Google Scholar 

  • Zilles K, Schlaug G, Matelli M, Luppino G, Schleicher A, Qu M, Dabringhaus A, Seitz R, Roland PE (1995) Mapping of human and macaque sensorimotor areas by integrating architectonic, transmitter receptor, MRI and PET data. J Anat 187(Pt 3):515–537

    Google Scholar 

  • Zilles K, Schleicher A, Palomero-Gallagher N, Amunts K (2002) Quantitative analysis of cyto- and receptor architecture of the human brain. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods, 2nd edn. Elsevier Science, Atlanta

    Google Scholar 

Download references

Acknowledgments

This review is based in part on work done in partial completion of a PhD by Alexandra de Sousa at the George Washington University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra A. de Sousa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Japan KK

About this chapter

Cite this chapter

Todorov, O.S., de Sousa, A.A. (2018). Evolution of the Occipital Lobe. In: Bruner, E., Ogihara, N., Tanabe, H. (eds) Digital Endocasts. Replacement of Neanderthals by Modern Humans Series. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56582-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56582-6_17

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56580-2

  • Online ISBN: 978-4-431-56582-6

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics