Skip to main content

Simultaneous Measurement of Surface-Enhanced Raman Scattering and Conductance Using Mechanically Controllable Break Junction Technique

  • Chapter
  • First Online:
  • 332 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Ensemble measurement of the adsorbed molecules and each metal structure showed fluctuation in the depolarisation SERS behaviour and the intensity ratio in the same spectrum. For further investigation of this depolarisation behaviour to know the details on the photoexcitation process, it is important to fabricate a single molecular junction combined with spectroscopy of the single molecule. In this chapter, simultaneous measurement of conductance and polarised SERS in relation to the molecular bridged metal nanojunction is performed. The conductance measurement proves the number of molecules, while polarised Raman measurement proves the orientation and CT character.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. B.C. Stipe, M.A. Rezaei, W. Ho, Science 280, 1732–1735 (1998)

    Article  CAS  Google Scholar 

  2. R.H.M. Smit, Y. Noat, C. Untiedt, N.D. Lang, M.C. van Hemert, J.M. van Ruitenbeek, Nature 419, 906–909 (2002)

    Article  CAS  Google Scholar 

  3. A. Troisi, M.A. Ratner, Nano Lett. 6, 1784–1788 (2006)

    Article  CAS  Google Scholar 

  4. J. Hihath, C.R. Arroyo, G. Rubio-Bollinger, N. Tao, N. Agraït, Nano Lett. 8, 1673–1678 (2008)

    Article  Google Scholar 

  5. M. Kiguchi, O. Tal, S. Wohlthat, F. Pauly, M. Krieger, D. Djukic, J.C. Cuevas, J.M. van Ruitenbeek, Phys. Rev. Lett. 101, 046801 (2008)

    Google Scholar 

  6. X.H. Qiu, G.V. Nazin, W. Ho, Science 299, 542–546 (2003)

    Article  CAS  Google Scholar 

  7. Y. Uehara, S. Ushioda, Surf. Sci. 601, 5643–5648 (2007)

    Article  CAS  Google Scholar 

  8. J.I. Pascual, J. Méndez, J. Gómez-Herrero, A.M. Baró, N. García, V.T. Binh, Phys. Rev. Lett. 71, 1852–1855 (1993)

    Article  CAS  Google Scholar 

  9. H. Ohnishi, Y. Kondo, K. Takayanagi, Nature 395, 780–783 (1998)

    Article  CAS  Google Scholar 

  10. J.L. Costa-Krämer, N. García, H. Olin, Phys. Rev. B 55, 12910–12913 (1997)

    Article  Google Scholar 

  11. B. Ludoph, M.H. Devoret, D. Esteve, C. Urbina, J.M. van Ruitenbeek, Phys. Rev. Lett. 82, 1530–1533 (1999)

    Article  CAS  Google Scholar 

  12. K. Hansen, E. Lægsgaard, I. Stensgaard, F. Besenbacher, Phys. Rev. B 56, 2208–2220 (1997)

    Article  CAS  Google Scholar 

  13. R. Landauer, IBM J. Res. Dev. 1, 223

    Google Scholar 

  14. D.R. Ward, N.J. Halas, J.W. Ciszek, J.M. Tour, Y. Wu, P. Nordlander, D. Natelson, Nano Lett. 8, 919–924 (2008)

    Article  CAS  Google Scholar 

  15. J.H. Tian, B. Liu, X. Li, Z.L. Yang, B. Ren, S.T. Wu, N. Tao, Z.Q. Tian, J. Am. Chem. Soc. 128, 14748–14749 (2006)

    Article  CAS  Google Scholar 

  16. X. Wang, Z. Liu, M.-D. Zhuang, H.-M. Zhang, X. Wang, Z.-X. Xie, D.-Y. Wu, B. Ren, Z.-Q. Tian, Appl. Phys. Lett. 91, 101105/1–101105/3 (2007)

    Google Scholar 

  17. Z. Liu, S.-Y. Ding, Z.-B. Chen, X. Wang, J.-H. Tian, J.R. Anema, X.-S. Zhou, D.-Y. Wu, B.-W. Mao, X. Xu, B. Ren, Z.-Q. Tian, Nat. Commun. 2, 1310/1–1310/6 (2011)

    Google Scholar 

  18. B. Xu, N.J. Tao, Science 301, 1221–1223 (2003)

    Article  CAS  Google Scholar 

  19. S.Y. Quek, M. Kamenetska, M.L. Steigerwald, H.J. Choi, S.G. Louie, M.S. Hybertsen, J.B. Neaton, L. Venkataraman, Nat. Nanotechnol. 4, 230–234 (2009)

    Article  CAS  Google Scholar 

  20. K. Horiguchi, S. Kurokawa, A. Sakai, J. Chem. Phys. 131, 104703 (2009)

    Article  Google Scholar 

  21. X.-S. Zhou, Z.-B. Chen, S.-H. Liu, S. Jin, L. Liu, H.-M. Zhang, Z.-X. Xie, Y.-B. Jiang, B.-W. Mao, J. Phys. Chem. C 112, 3935–3940 (2008)

    Article  CAS  Google Scholar 

  22. Z. Li, D.S. Kosov, J. Phys. Chem. B 110, 9893–9898 (2006)

    Article  CAS  Google Scholar 

  23. J.R. Lombardi, R.L. Birke, T. Lu, J. Xu, J. Chem. Phys. 84, 4174–4180 (1986)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumika Nagasawa .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Nagasawa, F. (2017). Simultaneous Measurement of Surface-Enhanced Raman Scattering and Conductance Using Mechanically Controllable Break Junction Technique. In: Studies on the Plasmon-Induced Photoexcitation Processes of Molecules on Metal Surfaces. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56579-6_3

Download citation

Publish with us

Policies and ethics