Skip to main content

Ferroic Nanometamaterials and Composites

  • Chapter
  • First Online:
Multiphysics in Nanostructures

Part of the book series: Nanostructure Science and Technology ((NST))

  • 711 Accesses

Abstract

Metamaterials, which possess artificially designed lattice-shaped internal structures, gain remarkably increasing attention owing to their unique, controllable, and often unprecedented properties. We review a series of pioneering studies on ferroelectric nanometamaterials and nanocomposites. After introducing the methodology of the phase-field model, we discuss domain configurations in nanometamaterials. Then, recent investigations of multiferroic (ferroelectric/ferromagnetic) nanocomposites are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84, 4184 (2000)

    Article  Google Scholar 

  2. R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001)

    Article  Google Scholar 

  3. M. Choi et al., Nature 470, 369 (2011)

    Article  Google Scholar 

  4. S. Linden, et al. Science 306, 1351 (2004)

    Google Scholar 

  5. M. Decker, M.W. Klein, M. Wegener, S. Linden, Opt. Lett. 32, 856 (2007)

    Article  Google Scholar 

  6. Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, Science 315, 1686 (2007)

    Article  Google Scholar 

  7. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Phys. Rev. Lett. 100, 207402 (2008)

    Article  Google Scholar 

  8. M. Kauranen, A.V. Zayats, Nat. Photonics 6, 737 (2012)

    Article  Google Scholar 

  9. M. Kadic, T. Buckmann, R. Schittny, M. Wegener, Rep. Prog. Phys. 76, 126501 (2013)

    Article  Google Scholar 

  10. T.A. Schaedler et al., Science 334, 962 (2011)

    Article  Google Scholar 

  11. T. Bückmann et al., Adv. Mater. 24, 2710 (2012)

    Article  Google Scholar 

  12. Z.G. Nicolaou, A.E. Motter, Nature Mater. 11, 608 (2012)

    Article  Google Scholar 

  13. T. Bückmann, M. Thiel, M. Kadic, R. Schittny, M. Wegener, Nat. Commun. 5, 4130 (2014)

    Article  Google Scholar 

  14. T. Shimada, L.V. Lich, K. Nagano, J. Wang, T. Kitamura, Sci. Rep. 5, 14653 (2015)

    Article  Google Scholar 

  15. L.V. Lich, T. Shimada, S. Sepideh, J. Wang, T. Kitamura, Acta. Mater. 113, 81–89 (2016)

    Article  Google Scholar 

  16. L.V. Lich, T. Shimada, K. Miyata, K. Nagano, J. Wang, T. Kitamura, Appl. Phys. Lett. 107, 232904 (2015)

    Article  Google Scholar 

  17. A. Gordon, I.D. Vagner, P. Wyder, Phys. Rev. B 41, 658 (1990)

    Article  Google Scholar 

  18. Y. Ni, L.H. He, A.G. Khachaturyan, J. Appl. Phys. 108, 023504 (2010)

    Article  Google Scholar 

  19. J. Wang, Appl. Phys. Lett. 97, 192901 (2010)

    Article  Google Scholar 

  20. A.F. Devonshire, Phil. Mag. (Suppl. 3) 85e130 (1954)

    Google Scholar 

  21. J. Wang, S.Q. Shi, L.Q. Chen, Y. Li, T.Y. Zhang, Acta Mater. 52, 749–764 (2004)

    Article  Google Scholar 

  22. J. Wang, M. Kamlah, Phys. Rev. B 80, 012101 (2009)

    Article  Google Scholar 

  23. J. Wang, T.Y. Zhang, Phys. Rev. B 73, 144107 (2006)

    Article  Google Scholar 

  24. J. Wang, T.Y. Zhang, Acta. Mater. 55, 2465–2477 (2007)

    Article  Google Scholar 

  25. J. Wang, T.Y. Zhang, Appl. Phys. Lett. 86, 192905 (2005)

    Article  Google Scholar 

  26. J. Wang, M. Kamlah, Smart Mater. Struct. 18, 104008 (2009)

    Article  Google Scholar 

  27. Y. Tong, M. Liu, H.M. Chen, G.P. Li, H. Fang, J. Wang, Z. Ma, J. Appl. Phys. 117, 074102 (2015)

    Article  Google Scholar 

  28. L.-Q. Chen, Annu. Rev. Mater. Res. 32, 113 (2002)

    Article  Google Scholar 

  29. J. Wang, J. Zhang, T. Shimada, T. Kitamura, J. Phys.: Condens. Matter 25, 226002 (2013)

    Google Scholar 

  30. J.K. Ha, R. Hertel, J. Kirschner, Phys. Rev. B 67, 224432 (2003)

    Article  Google Scholar 

  31. C.M. Landis, J. Mech. Phys. Solids 56, 3059 (2008)

    Article  Google Scholar 

  32. J. Wang, G.-P. Li, T. Shimada, H. Fang, T. Kitamura, Appl. Phys. Lett. 103, 242413 (2013)

    Article  Google Scholar 

  33. J. Wang, J. Zhang, Int. J. Solids Struct. 50, 3597 (2013)

    Article  Google Scholar 

  34. J. Wang, G.P. Li, Comput. Mater. Sci. 108, 316–322 (2015)

    Article  Google Scholar 

  35. H.T. Chen, Y. Ni, A.K. Soh, J. Appl. Phys. 113, 134102 (2013)

    Article  Google Scholar 

  36. T.N. Yang, J.M. Hu, C.W. Nan, L.Q. Chen, Appl. Phys. Lett. 104, 052904 (2014)

    Article  Google Scholar 

  37. I.I. Naumov, L. Bellaiche, H. Fu, Nature 432, 737 (2004)

    Article  Google Scholar 

  38. V.I. Aleshin, I.P. Raevski, J. Appl. Phys. 112, 114101 (2012)

    Article  Google Scholar 

  39. V.I. Aleshin, I.P. Raevski, J. Appl. Phys. 113, 224105 (2013)

    Article  Google Scholar 

  40. T. Shimada, X. Wang, Y. Kondo, T. Kitamura, Phys. Rev. Lett. 108, 067601 (2012)

    Article  Google Scholar 

  41. S. Sepideh, Master’s Dissertation, Kyoto University, (unpublished)

    Google Scholar 

  42. E. Ascher, H. Rieder, H. Schmid, H. Stossel, J. Appl. Phys. 37, 1404 (1966)

    Article  Google Scholar 

  43. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Nature 426, 55 (2003)

    Article  Google Scholar 

  44. N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, S.-W. Cheong, Nature 429, 392 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Umeno .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Umeno, Y., Shimada, T., Kinoshita, Y., Kitamura, T. (2017). Ferroic Nanometamaterials and Composites. In: Multiphysics in Nanostructures. Nanostructure Science and Technology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56573-4_8

Download citation

Publish with us

Policies and ethics