Skip to main content

Ideal Strength in Low-Dimensional Nanostructures

  • Chapter
  • First Online:
Multiphysics in Nanostructures

Part of the book series: Nanostructure Science and Technology ((NST))

  • 699 Accesses

Abstract

The ideal strength is the theoretical strength of materials setting the limit of stress attained and is therefore an important fundamental quantity describing mechanical behavior of materials. While a substantial number of studies have been dedicated to the ideal strength of various types of crystals, the ideal strength of nanostructures can be peculiar due to strong influence of low-dimensional structures on the mechanical properties. We introduce recent studies of the ideal strength of nanostructures, mainly discussing that of two-dimensional (e.g., films) and one-dimensional (e.g., nanowires and nanotubes) structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Born, K. Huang, Dynamic Theory of Crystal Lattices (Oxford, UP, 1954)

    Google Scholar 

  2. G. Grimvall, B.M. Kope, V. Ozolins, K.A. Perrsson, Rev. Mod. Phys. 84, 945 (2012)

    Article  Google Scholar 

  3. J. Pokluda, M. Cerny, M. Sob, Y. Umeno, Prog. Mater Sci. 73, 127 (2015)

    Article  Google Scholar 

  4. S. Yip, Handbook of Materials Modeling, Springer (2005)

    Google Scholar 

  5. A. Kushima, Ph.D. thesis, Kyoto University, 2007

    Google Scholar 

  6. D.M. Clatterbudk, C.R. Krenn, M.L. Cohen, J.W. Morris Jr., Phys. Rev. Lett. 91, 135501 (2003)

    Article  Google Scholar 

  7. K. Yashiro, K. Yamagami, K. Kubo, Y. Tomita, JSME Int. J. A 49, 100 (2006)

    Article  Google Scholar 

  8. T. Kitamura, Y. Umeno, N. Tsuji, Comp. Mater. Sci. 29, 499 (2004)

    Article  Google Scholar 

  9. T. Kitamura, Y. Umeno, R. Fushino, Mater. Sci. Eng., A 379, 229 (2004)

    Article  Google Scholar 

  10. R.C. Cammarata, Prog. Surf. Sci. 46, 1 (1994)

    Article  Google Scholar 

  11. Y. Shiihara, M. Kohyama, S. Ishibashi, Phys. Rev. B 81, 075441 (2010)

    Article  Google Scholar 

  12. S. Giusepponi, M. Celino, Nucl. Instr. Meth. Phys. Res. B 342, 70 (2015)

    Article  Google Scholar 

  13. D. Hull and D. J. Bacon, Introduction to Dislocations, fifth ed., Butterworth-Heinemann (2011)

    Google Scholar 

  14. B. Joos, Q. Ren, M.S. Duesbery, Phys. Rev. B 50, 5890 (1994)

    Article  Google Scholar 

  15. R. Janisch, N. Ahmed, A. Hartmaier, Phys. Rev. B 81, 184108 (2010)

    Article  Google Scholar 

  16. X. Pang, N. Ahmed, R. Janisch, A. Hartmaier, J. Appl. Phys. 112, 023503 (2012)

    Article  Google Scholar 

  17. Y. Yan, T. Kondo, T. Shimada, T. Sumigawa, T. Kitamura, Mater. Sci. Eng., A 534, 681 (2012)

    Article  Google Scholar 

  18. D. Farkas, Curr. Opin. Solid State Mater. Sci. 17, 284 (2013)

    Article  Google Scholar 

  19. Y.L. Liu, H.B. Zhou, S. Jin, Y. Zhang, G.H. Lu, Chin. Phys. Lett. 27, 127101 (2010)

    Article  Google Scholar 

  20. S. Giusepponi, M. Celino, J. Nucl. Mater. 435, 52 (2013)

    Article  Google Scholar 

  21. Y. Kinoshita, Ph.D. thesis, Kyoto University, 2008

    Google Scholar 

  22. S.K. Yadav, R. Ramprasad, J. Wang, A. Misra, X.Y. Liu, Modelling Simul. Mater. Sci. Eng. 22, 035020 (2014)

    Article  Google Scholar 

  23. A. Ramstad, G. Brocks, P.J. Kelly, Phys. Rev. B 51, 14504 (1995)

    Article  Google Scholar 

  24. K.D. Brommer, M. Needels, B.E. Larson, J.D. Joannopoulos, Phys. Rev. Lett. 68, 1355 (1992)

    Article  Google Scholar 

  25. Y. Umeno, A. Kushima, T. Kitamura, P. Gumbsch, J. Li, Phys. Rev. B 72, 165431 (2005)

    Article  Google Scholar 

  26. Y.S. Kim, S.M. Lee, Phys. Rev. B 75, 165304 (2007)

    Article  Google Scholar 

  27. X.Y. Zhou, H. Ren, B.L. Huang, T.Y. Zhang, Phys. Lett. A 379, 471 (2015)

    Article  Google Scholar 

  28. P. Lin, R.I. Babicheva, M. Xue, H.S. Zhang, H. Xu, B. Liu, K. Zhou, Comp. Mater. Sci. 96, 295 (2015)

    Article  Google Scholar 

  29. R. Zhachuk, S. Teys, J. Coutinho, J. Chem. Phys. 138, 224702 (2013)

    Article  Google Scholar 

  30. M. Cerny, J. Pokluda, J. Phys.: Condens. Matter 21, 145406 (2009)

    Google Scholar 

  31. Q.N. Guo, X.D. Yue, S.E. Yang, Y.P. Huo, Comp. Mater. Sci. 50, 319 (2010)

    Article  Google Scholar 

  32. S. Xu, Y.F. Guo, Z.D. Wang, Comp. Mater. Sci. 67, 140 (2013)

    Article  Google Scholar 

  33. F. Liu, P. Ming, J. Li, Phys. Rev. B 76, 064120 (2007)

    Article  Google Scholar 

  34. T. Shao, B. Wen, R. Melnik, S. Yao, Y. Kawazoe, Y. Tian, J. Chem. Phys. 137, 194901 (2012)

    Article  Google Scholar 

  35. H. Zhao, N.R. Aluru, J. Appl. Phys. 108, 064321 (2010)

    Article  Google Scholar 

  36. K. Min, N.R. Aluru, Appl. Phys. Lett. 98, 013113 (2011)

    Article  Google Scholar 

  37. M.A.N. Dewapriya, A.S. Phani, R.K.N.D. Rajapakse, Modelling Simul. Mater. Sci. Eng. 21, 065017 (2013)

    Article  Google Scholar 

  38. C.A. Marianetti, H.G. Yevick, Phys. Rev. Lett. 105, 245502 (2010)

    Article  Google Scholar 

  39. C. Yang, Z. Yu, P. Lu, Y. Liu, H. Ye, T. Gao, Comp. Mater. Sci. 95, 420 (2014)

    Article  Google Scholar 

  40. Q. Wei, X. Peng, Appl. Phys. Lett. 104, 251915 (2014)

    Article  Google Scholar 

  41. E.B. Isaacs, C.A. Marianetti, Phys. Rev. B 89, 184111 (2014)

    Article  Google Scholar 

  42. Q. Peng, S. De, Nanoscale 6, 12071 (2014)

    Article  Google Scholar 

  43. T. Li, Phys. Rev. B 85, 235407 (2012)

    Article  Google Scholar 

  44. D.B. Migas, V.E. Borisenko, J. Appl. Phys. 105, 104316 (2009)

    Article  Google Scholar 

  45. S. Ismail-Beigi, T. Arias, Phys. Rev. B 57, 11923 (1998)

    Article  Google Scholar 

  46. Z. Yang, Z. Lu, Y.P. Zhao, J. Appl. Phys. 106, 023537 (2009)

    Article  Google Scholar 

  47. J. Guénolé, J. Godet, S. Brochard, Modelling Simul. Mater. Sci. Eng. 19, 074003 (2011)

    Article  Google Scholar 

  48. H.A. Hu, Euro. J. Mech. A/Solids 25, 370 (2006)

    Article  Google Scholar 

  49. A. Cao, Y. Wei, E. Ma, Phys. Rev. B 77, 195429 (2008)

    Article  Google Scholar 

  50. W. Liang, M. Zhou, F. Ke, Nano Lett. 5, 2039 (2005)

    Article  Google Scholar 

  51. A. Cao, Y. Wei, Phys. Rev. B 74, 214108 (2006)

    Article  Google Scholar 

  52. N.T. Hung, D.V. Truong, Surf. Sci. 641, 1 (2015)

    Article  Google Scholar 

  53. A. Kushima, Y. Umeno, T. Kitamura, Modelling Simul. Mater. Sci. Eng. 14, 1031 (2006)

    Article  Google Scholar 

  54. T. Dumitrica, M. Hua, B.I. Yakobson, Proc. Natl. Acad. Sci. U.S.A. 103, 6105 (2006)

    Article  Google Scholar 

  55. S. Ogata, Y. Shibutani, Phys. Rev. B 68, 165409 (2003)

    Article  Google Scholar 

  56. T. Dumitrica, B.I. Yakobson, Appl. Phys. Lett. 84, 2775 (2004)

    Article  Google Scholar 

  57. J. Sun, L. He, Y.C. Lo, T. Xu, H. Bi, L. Sun, Z. Zhang, S.X. Mao, J. Li, Nature Mater. 13, 1007 (2014)

    Article  Google Scholar 

  58. Z.Y. Wang, K.H. Su, H.Q. Fan, L.D. Hu, X. Wang, Y.L. Li, Z.Y. Wen, Comp. Mater. Sci. 40, 537 (2007)

    Article  Google Scholar 

  59. Z. Wang, D. Liu, K. Su, H. Fan, Y. Li, Z. Wen, Chem. Phys. 331, 309 (2007)

    Article  Google Scholar 

  60. Z.Y. Wang, K.H. Su, H.Q. Fan, Y.L. Li, Z.Y. Wen, Mol. Phys. 106, 703 (2008)

    Article  Google Scholar 

  61. Z.Y. Wang, K.H. Su, X.P. Yao, Y.L. Li, F. Wang, Mater. Chem. Phys. 119, 406 (2010)

    Article  Google Scholar 

  62. T. Kitamura, Y. Umeno, A. Kushima, Mater. Sci. Forum 482, 25 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Umeno .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Umeno, Y., Shimada, T., Kinoshita, Y., Kitamura, T. (2017). Ideal Strength in Low-Dimensional Nanostructures. In: Multiphysics in Nanostructures. Nanostructure Science and Technology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56573-4_3

Download citation

Publish with us

Policies and ethics