Skip to main content

Use of Hexose Photolabels to Reveal the Structure and Function of Glucose Transporters

  • Chapter
  • First Online:
Photoaffinity Labeling for Structural Probing Within Protein
  • 563 Accesses

Abstract

Photoaffinity labelling probes which are hexose and bis-hexose derivatives have been expensively used to study the structure and physiological functions of the glucose transporters of the GLUT family. Substrate binding site locations have been probed using these derivatives. The glucose transport proteins are physiologically important in maintaining blood glucose levels, and they have a tissue-specific distribution that allows them to remove glucose from the bloodstream in a controlled manner. In heart, skeletal muscle and adipose tissue, the GLUT4 transporter is present both at the cell surface and in an intracellular membrane vesicle reservoir compartment. Insulin action leads to a translocation of this protein between these locations. Only the cell surface transporters are labelled by the impermeable photoaffinity probes, and these have therefore been used to determine the extent of response to insulin and to additional stimuli, including those that are due to changes in the cellular energy status that occurs during exercise. These responses can be monitored in human subjects with pathophysiological changes in glucose homeostasis as occurs in obesity and type 2 diabetes. It is also possible to carry out pulse-chase kinetic experiments in which the tagged GLUT4 movement between cellular compartments is followed over time. These studies have revealed that insulin action mainly leads to an acceleration of the exocytotic limb of the GLUT4 recycling pathway. For the use of photoprobes in kinetic experiments on intact cells, it was necessary to develop biotinylated photoaffinity probes that had very long spacer arms of approximately 20 Å.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barnett JEG, Holman GD, Munday KA (1973) Structural requirements for binding to the sugar transport system of the human erythrocyte. Biochem J 131:211–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnett JEG, Holman GD, Chalkley RA, Munday KA (1975) Evidence for two asymmetric conformational states in the human erythrocyte sugar-transport system. Biochem J 145(3):417–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark AE, Holman GD (1990) Exofacial photolabelling of the human erythrocyte glucose transporter with an azitrifluoroethylbenzoyl-substituted bismannose. Biochem J 269(3):615–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke JF, Young PW, Yonezawa K, Kasuga M, Holman GD (1994) Inhibition of the translocation of GLUT1 and GLUT4 in 3T3-L1 cells by the phosphatidylinositol 3-kinase inhibitor, wortmannin. Biochem J 300(Pt 3):631–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cope DL, Holman GD, Baldwin SA, Wolstenholme AJ (1994) Domain assembly of the glut1 glucose-transporter. Biochem J 300:291–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cushman SW, Wardzala LJ (1980) Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane. J Biol Chem 255:4758–4762

    CAS  PubMed  Google Scholar 

  • Deng D, Sun P, Yan C, Ke M, Jiang X, Xiong L, Ren W, Hirata K, Yamamoto M, Fan S, Yan N (2015) Molecular basis of ligand recognition and transport by glucose transporters. Nature 526(7573):391–396. doi:10.1038/nature14655

    Article  CAS  PubMed  Google Scholar 

  • Gould GW, Holman GD (1993) The glucose-transporter family—structure, function and tissue-specific expression. Biochem J 295:329–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto M, Hatanaka Y, Yang J, Dhesi J, Holman GD (2001a) Synthesis of biotinylated bis(d-glucose) derivatives for glucose transporter photoaffinity labelling. Carbohydr Res 331(2):119–127

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto M, Yang J, Holman GD (2001b) Cell-surface recognition of biotinylated membrane proteins requires very long spacer arms: an example from glucose-transporter probes. ChembioChem 2(1):52–59. doi:10.1002/1439-7633(20010105)2:1<52::AID-CBIC52>3.0.CO;2-F

    Article  CAS  PubMed  Google Scholar 

  • Holman GD, Kasuga M (1997) From receptor to transporter: insulin signalling to glucose transport. Diabetologia 40(9):991–1003. doi:10.1007/s001250050780

    Article  CAS  PubMed  Google Scholar 

  • Holman GD, Rees WD (1987) Photolabelling of the hexose transporter at external and internal sites: fragmentation patterns and evidence for a conformational change. Biochim Biophys Acta 897(3):395–405

    Article  CAS  PubMed  Google Scholar 

  • Holman GD, Kozka IJ, Clark AE, Flower CJ, Saltis J, Habberfield AD, Simpson IA, Cushman SW (1990) Cell surface labeling of glucose transporter isoform GLUT4 by bis-mannose photolabel. Correlation with stimulation of glucose transport in rat adipose cells by insulin and phorbol ester. J Biol Chem 265(30):18172–18179

    CAS  PubMed  Google Scholar 

  • Karlsson HK, Chibalin AV, Koistinen HA, Yang J, Koumanov F, Wallberg-Henriksson H, Zierath JR, Holman GD (2009) Kinetics of GLUT4 trafficking in rat and human skeletal muscle. Diabetes 58(4):847–854. doi:10.2337/db08-1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koumanov F, Yang J, Jones AE, Hatanaka Y, Holman GD (1998) Cell-surface biotinylation of GLUT4 using bis-mannose photolabels. Biochem J 330(Pt 3):1209–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koumanov F, Jin B, Yang J, Holman GD (2005) Insulin signaling meets vesicle traffic of GLUT4 at a plasma-membrane-activated fusion step. Cell Metab 2(3):179–189. doi:10.1016/j.cmet.2005.08.007

    Article  CAS  PubMed  Google Scholar 

  • Midgley PJW, Parkar BA, Holman GD, Thieme R, Lehmann J (1985) Transport-properties of photolabile sugar analogs. Biochim Biophys Acta 812:27–32

    Article  CAS  Google Scholar 

  • Mueckler M, Caruso C, Baldwin SA, Panico M, Blench I, Morris HR, Allard WJ, Lienhard GE, Lodish HF (1985) Sequence and structure of a human glucose transporter. Science 229(4717):941–945

    Article  CAS  PubMed  Google Scholar 

  • Park JJ, Sadakane Y, Masuda K, Tomohiro T, Nakano T, Hatanaka Y (2005) Synthesis of diazirinyl photoprobe carrying a novel cleavable biotin. ChembioChem 6(5):814–818. doi:10.1002/cbic.200400342

    Article  CAS  PubMed  Google Scholar 

  • Pryor PR, Liu SC, Clark AE, Yang J, Holman GD, Tosh D (2000) Chronic insulin effects on insulin signalling and GLUT4 endocytosis are reversed by metformin. Biochem J 348(Pt 1):83–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryder JW, Yang J, Galuska D, Rincón J, Björnholm M, Krook A, Lund S, Pedersen O, Wallberg-Henriksson H, Zierath JR, Holman GD (2000) Use of a novel impermeable biotinylated photolabeling reagent to assess insulin and hypoxia-stimulated cell surface GLUT4 content in skeletal muscle from type 2 diabetic patients. Diabetes 49:647–654

    Article  CAS  PubMed  Google Scholar 

  • Satoh S, Nishimura H, Clark AE, Kozka IJ, Vannucci SJ, Simpson IA, Quon MJ, Cushman SW, Holman GD (1993) Use of bis-mannose photolabel to elucidate insulin-regulated GLUT4 subcellular trafficking kinetics in rat adipose cells: evidence that exocytosis is a critical site of hormone action. J Biol Chem 268:17820–17829

    CAS  PubMed  Google Scholar 

  • Stockli J, Fazakerley DJ, James DE (2011) GLUT4 exocytosis. J Cell Sci 124(Pt 24):4147–4159. doi:10.1242/jcs.097063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Holman GD (2005) Insulin and contraction stimulate exocytosis, but increased AMP-activated protein kinase activity resulting from oxidative metabolism stress slows endocytosis of GLUT4 in cardiomyocytes. J Biol Chem 280(6):4070–4078. doi:10.1074/jbc.M410213200

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Holman GD (2006) Long-term metformin treatment stimulates cardiomyocyte glucose transport through an AMP-activated protein kinase-dependent reduction in GLUT4 endocytosis. Endocrinology 147(6):2728–2736. doi:10.1210/en.2005-1433

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Dowden J, Tatibouet A, Hatanaka Y, Holman GD (2002a) Development of high-affinity ligands and photoaffinity labels for the d-fructose transporter GLUT5. Biochem J 367(Pt 2):533–539. doi:10.1042/BJ20020843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Gillingham AK, Hodel A, Koumanov F, Woodward B, Holman GD (2002b) Insulin-stimulated cytosol alkalinization facilitates optimal activation of glucose transport in cardiomyocytes. Am J Physiol Endocrinol Metab 283(6):E1299–E1307. doi:10.1152/ajpendo.00341.2002

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Hodel A, Holman GD (2002c) Insulin and isoproterenol have opposing roles in the maintenance of cytosol pH and optimal fusion of GLUT4 vesicles with the plasma membrane. J Biol Chem 277(8):6559–6566. doi:10.1074/jbc.M108610200

    Article  CAS  PubMed  Google Scholar 

  • Young PW, Cawthorne MA, Coyle PJ, Holder JC, Holman GD, Kozka IJ, Kirkham DM, Lister CA, Smith SA (1995) Repeat treatment of obese mice with BRL 49653, a new potent insulin sensitizer, enhances insulin action in white adipocytes. Association with increased insulin binding and cell-surface GLUT4 as measured by photoaffinity labeling. Diabetes 44(9):1087–1092

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey D. Holman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Holman, G.D. (2017). Use of Hexose Photolabels to Reveal the Structure and Function of Glucose Transporters. In: Hatanaka, Y., Hashimoto, M. (eds) Photoaffinity Labeling for Structural Probing Within Protein. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56569-7_9

Download citation

Publish with us

Policies and ethics