Skip to main content

Multifunctional Photoprobes for Identification of Ligand Sites Within Biomolecules

  • Chapter
  • First Online:
Photoaffinity Labeling for Structural Probing Within Protein

Abstract

The technique of photoaffinity labeling has become increasingly appreciated as a powerful methodology for post-genome field because it is one of the attractive methods to elucidate the interactions between bioactive ligand and biomolecule. The combinations with detection and isolation methods are essential to identify photolabeled components. There are several methods to introduce detection and isolation methods, which are so-called “tag,” for photolabeled components from the photoaffinity label mixture. High detection limits of tag enable us to identify the photolabeled components. The introduction of detection and isolation tags in the ligand skeleton is one of the ways to archive identification of photolabeled components because the labeled components have been only introduced the tag. On the other hands, the specific biological interactions for target biomolecules are also utilized to identify photolabeled components. The chapter summarized that the several combinations of photoaffinity labeling and “tag” to study labeled components effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambroise Y, Pillon F, Mioskowski C, Valleix A, Rousseau B (2001) Synthesis and tritium labeling of new aromatic diazirine building blocks for photoaffinity labeling and cross-linking. Eur J Org Chem 2001:3961–3964

    Article  Google Scholar 

  • Bayer EA, Wilchek M (1990) Application of avidin–biotin technology to affinity-based separations. J Chromatogr 510:3–11

    Article  CAS  PubMed  Google Scholar 

  • Bayer EA, Ben-Hur H, Wilchek M (1990) Isolation and properties of streptavidin. Methods Enzymol 184:80–89

    Article  CAS  PubMed  Google Scholar 

  • Bender T, Huss M, Wieczorek H, Grond S, von Zezschwitz P (2007) Convenient synthesis of a [1-14C]diazirinylbenzoic acid as a photoaffinity label for binding studies of a V-ATPase inhibitors. Eur J Org Chem 2007:3870–3878

    Google Scholar 

  • Blanton MP, McCardy EA, Huggins A, Parikh D (1998) Probing the structure of the nicotinic acetylcholine receptor with the hydrophobic photoreactive probes [125I]TID-BE and [125I]TIDPC/16. Biochemistry 37:14545–14555

    Google Scholar 

  • Blanton MP, McCardy EA, Gallagher MJ (2000) Examining the noncompetitive antagonist-binding site in the ion channel of the nicotinic acetylcholine receptor in the resting state. J Biol Chem 275:3469–3478

    Article  CAS  PubMed  Google Scholar 

  • Brunner J (1993) New photolabeling and crosslinking methods. Annu Rev Biochem 62:483–514

    Article  CAS  PubMed  Google Scholar 

  • Brunner J, Semenza G (1981) Selective labeling of the hydrophobic core of membranes with 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine, a carbene-generating reagent. Biochemistry 20:7174–7182

    Google Scholar 

  • Dakshinamurti K, Rector ES (1990) Monoclonal antibody to biotin. Methods Enzymol 184:111–119

    Article  CAS  PubMed  Google Scholar 

  • Dolder M, Michel H, Sigrist H (1990) 3-(Trifluoromethyl)-3-(m-isothiocyanophenyl)diazirine: synthesis and chemical characterization of a heterobifunctional carbene-generating crosslinking reagent. J Protein Chem 9:407–415

    Google Scholar 

  • Dormán G, Prestwich GD (2000) Using photolabile ligands in drug discovery and development. Trends Biotechnol 18:64–77

    Article  PubMed  Google Scholar 

  • Fang S, Bergstrom DE (2003) Fluoride-cleavable biotinylation phosphoramidite for 5′-end-labeling and affinity purification of synthetic oligonucleotides. Nucleic Acids Res 31:708–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang K, Hashimoto M, Jockusch S, Turro NJ, Nakanishi K (1998) A bifunctional photoaffinity probe for ligand/receptor interaction studies. J Am Chem Soc 120:8543–8544

    Article  CAS  Google Scholar 

  • Filer CN (2009) Tritium labelled photoaffinity agents. J Radioanal Nucl Chem 281:521–530

    Article  CAS  Google Scholar 

  • Foucaud B, Perret P, Grutter T, Goeldner M (2001) Cysteine mutants as chemical sensors for ligand-receptor interactions. Trends Pharmacol Sci 22:170–173

    Article  CAS  PubMed  Google Scholar 

  • Gilbert BA, Rando RR (1995) Modular design of biotinylated photoaffinity probes—synthesis and utilization of a biotinylated pepstatin photoprobe. J Am Chem Soc 117:8061–8066

    Article  CAS  Google Scholar 

  • Green NM, Toms EJ (1973) The properties of subunits of avidin coupled to Sepharose. Biochem J 133:687–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto M, Hatanaka Y (1999) Identification of photolabeled peptides for the acceptor substrate binding domain of β1,4-galactosyltransferase. Chem Pharm Bull 47:667–671

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto M, Hatanaka Y (2004) Simple synthesis of deuterium and 13C labeled trifluoromethyl phenyldiazirine derivatives as stable isotope tags for mass spectrometry. Chem Pharm Bull 52:1385–1386

    Google Scholar 

  • Hashimoto M, Hatanaka Y (2005a) Post-biotinylation of photocrosslinking by Staudinger–Bertozzi ligation of preinstalled alkylazide tag. Chem Pharm Bull 53:1510–1512

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto M, Hatanaka Y (2005b) Diol derivative of (3-trifluoromethyl)phenyldiazirine for post-labeling of photocrosslink. Heterocycles 66:531–534

    Article  CAS  Google Scholar 

  • Hashimoto M, Hatanaka Y (2006) Positively coded photoaffinity label for altering isoelectric points of proteins. Bioorg Med Chem Lett 16:5998–6000

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto M, Hatanaka Y (2008a) Recent progress in diazirine-based photoaffinity labeling. Eur J Org Chem 2008:2513–2523

    Article  Google Scholar 

  • Hashimoto M, Hatanaka Y (2008b) A novel biotinyl and diazirinyl ceramide analogue for photoaffinity labeling. Bioorg Med Chem Lett 18:650–652

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto M, Hatanaka Y, Yang J, Dhesi J, Holman GD (2001) Synthesis of biotinylated bis(D-glucose) derivatives for glucose transporter photoaffinity labeling. Carbohydr Res 331:119–127

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto M, Okamoto S, Nabeta K, Hatanaka Y (2004) Enzyme cleavable and biotinylated photoaffinity ligand with diazirine. Bioorg Med Chem Lett 14:2447–2450

    Article  CAS  PubMed  Google Scholar 

  • Hatanaka Y (2015) Development and leading-edge application of innovative photoaffinity labeling. Chem Pharm Bull 63:1–12

    Article  CAS  PubMed  Google Scholar 

  • Hatanaka Y, Kanaoka Y (1998) Biotinyl diazirine photophore—an approach to high-resolution photoaffinity-labeling for probing receptor-ligand interface. Heterocycles 47:625–632

    Article  CAS  Google Scholar 

  • Hatanaka Y, Nakayama H, Kanaoka Y (1992) Photoaffinity labeling of the electroplax sodium channel with a photoreactive μ-conotoxin carrying a radioactive and chromogenic diazirine. Chem Pharm Bull 40:2537–2539

    Article  CAS  PubMed  Google Scholar 

  • Hatanaka Y, Hashimoto M, Kurihara H, Nakayama H, Kanaoka Y (1994a) A novel family of aromatic diazirines for photoaffinity labeling. J Org Chem 59:383–387

    Article  CAS  Google Scholar 

  • Hatanaka Y, Hashimoto M, Nakayama H, Kanaoka Y (1994b) Syntheses of nitro-substituted aryl diazirines. An entry to chromogenic carbene precursors for photoaffinity labeling. Chem Pharm Bull 42:826–831

    Article  CAS  Google Scholar 

  • Hatanaka Y, Hashimoto M, Hidari KI-PJ, Sanai Y, Nagai Y, Kanaoka Y (1995) A carbene-generating biotinylated lactosylceramide analog as novel photoreactive substrate for GM3 synthase. Bioorg Med Chem Lett 5:2859–2862

    Article  CAS  Google Scholar 

  • Hatanaka Y, Hashimoto M, Nishihara S, Narimatsu H, Kanaoka Y (1996a) Synthesis and characterization of a carbene-generating biotinylated N-acetylglucosamine for photoaffinity labeling of β-1,4-galactosyltransferase. Carbohydr Res 294:95–108

    Article  CAS  Google Scholar 

  • Hatanaka Y, Nakayama H, Kanaoka Y (1996b) Diazirine-based photoaffinity labeling: chemical approach to biological interfaces. Rev Heteroatom Chem 14:213–243

    CAS  Google Scholar 

  • Hatanaka Y, Hashimoto M, Kanaoka Y (1998) A rapid and efficient method for identifying photoaffinity biotinylated sites within proteins. J Am Chem Soc 120:453–454

    Article  CAS  Google Scholar 

  • Hatanaka Y, Ishiguro M, Hashimoto M, Gastinel LN, Nakagomi K (2001) A model of photoprobe docking with β1,4-galactosyltransferase identifies a possible carboxylate involved in glycosylation steps. Bioorg Med Chem Lett 11:411–413

    Article  CAS  PubMed  Google Scholar 

  • Kotzyba-Hibert F, Kapfer I, Goeldner M (1995) Recent trends in photoaffinity labeling. Angew Chem Int Ed Engl 34:1296–1312

    Article  CAS  Google Scholar 

  • Latli B, Morimoto H, Williams PG, Casida JE (1998) Photoaffinity radioligand for NADH:ubiquinone oxidoreductase: [S-C3H2](trifluoromethyl)diazirinyl-pyridaben. J Label Compd Radiopharm 41:191–199

    Article  CAS  Google Scholar 

  • Mourot A, Grutter T, Goeldner M, Kotzyba-Hibert F (2006) Dynamic structural investigations on the torpedo nicotinic acetylcholine receptor by time-resolved photoaffinity labeling. Chembiochem 7:570–583

    Article  CAS  PubMed  Google Scholar 

  • Nakayama H, Taki M, Striessnig J, Glossmann H, Catterall WA, Kanaoka Y (1991) Identification of 1,4-dihydropyridine binding regions within the α1 subunit of skeletal muscle calcium channels by photoaffinity labeling with diazipine. Proc Natl Acad Sci U S A 88:9203–9207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakayama H, Hatanaka Y, Taki M, Yoshida E, Kanaoka Y (1993) Identification of ligand-binding sites that form external mouth of ion pore in calcium and sodium channels. Ann N Y Acad Sci 707:349–351

    Article  CAS  PubMed  Google Scholar 

  • Olejnik J, Sonar S, Krzymanska-Olejnik E, Rothschild KJ (1995) Photocleavable biotin derivatives: a versatile approach for the isolation of biomolecules. Proc Natl Acad Sci U S A 92:7590–7594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JJ, Sadakane Y, Masuda K, Tomohiro T, Nakano T, Hatanaka Y (2005) Synthesis of diazirinyl photoprobe carrying a novel cleavable biotin. Chembiochem 6:814–818

    Article  CAS  PubMed  Google Scholar 

  • Rimoldi JM, Kingston DGI, Chaudhary AG, Samaranayake G, Grover S, Hamel E (1993) Modified taxols, 9. Synthesis and biological evaluation of 7-substituted photoaffinity analogs of taxol. J Nat Prod 56:1313–1330

    Article  CAS  PubMed  Google Scholar 

  • Tomohiro T, Hatanaka Y (2014) Diazirine-based multifunctional photo-probes for affinity-based elucidation of protein-ligand interaction. Heterocycles 89:2697–2727

    Article  CAS  Google Scholar 

  • Wallrabe H, Periasamy A (2005) Imaging protein molecules using FRET and FLIM microscopy. Curr Opin Biotechnol 16:19–27

    Article  CAS  PubMed  Google Scholar 

  • Wold F (1977) Affinity labeling—an overview. Methods Enzymol 46:3–14

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

M.H. is very grateful to Prof. Y. Hatanaka (University of Toyama), G.D. Holman (University of Bath), and Prof. Y. Kanaoka (Toyama College) for valuable advice throughout the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Hashimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Hashimoto, M. (2017). Multifunctional Photoprobes for Identification of Ligand Sites Within Biomolecules. In: Hatanaka, Y., Hashimoto, M. (eds) Photoaffinity Labeling for Structural Probing Within Protein. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56569-7_1

Download citation

Publish with us

Policies and ethics