Skip to main content

Behavior of a Rising Bubble Through an Oil/Water Interface

  • Chapter
  • First Online:
Flow Visualization in Materials Processing

Part of the book series: Mathematics for Industry ((MFI,volume 27))

Abstract

The mass transfer between immiscible two liquid phases can be greatly accelerated by bubbling gas through a reactor. Therefore, the physical phenomenon occurring during passage of a rising bubble through an immiscible two-liquid interface is of particular interest. The passage of the bubble through the oil (upper phase)/water (lower phase) interface starts with an upward lifting of the interface, and the bubble attracts a column of the water phase upwards keeping a film of the water phase around itself. In this chapter, particular remark is given to the influence of different interface tensions retracting water film, after the water film ruptured, which lays on the interface between air and silicone oil. Unlike the previous studies on the rupture of a single liquid film in a gas which is pulled due to the identical surface tension, this system can form concentric ripples on the outer interface of the water film (oil/water interface) around the bubble due to the weak interface tension. Then, numerous microwater droplets break out from the fully grown ripples. Also, index matching visualization and Computational Fluid Dynamics (CFD) sheds light on the instantaneous behavior on the bubble surface to make clear the still vague phenomenon. Furthermore, this chapter shows an oppositely charged oil/water interface makes more and finer droplets than the original experiment in the absence of the voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.C. Bird, R. de Ruiter, L. Courbin, H.A. Stone, Daughter bubbles cascades produced by folding of ruptured thin films. Nature 465, 759–762 (2010)

    Article  Google Scholar 

  2. J.M. Boulton-Stone, J.R. Blake, Gas bubbles bursting at a free surface. J. Fluid Mech. 254, 437–466 (1993)

    Article  MATH  Google Scholar 

  3. M.P. Brenner, D. Gueyffier, On the bursting of viscous films. Phys. Fluids 11, 737–739 (1999)

    Article  MATH  Google Scholar 

  4. F.E.C. Culick, Comments on a ruptured soap film. J. Appl. Phys. 31, 1128–1130 (1960)

    Article  Google Scholar 

  5. R. da Silveira, S. Chaïeb, L. Mahadevan, Rippling instability of a collapsing bubble. Science 287, 1468–1471 (2000)

    Article  Google Scholar 

  6. G. Debrégeas, P.-G. de Gennes, F. Brochard-Wyart, The life and death of "bare" viscous bubbles. Science 279, 1704–1707 (1998)

    Article  Google Scholar 

  7. G. Debrégeas, P. Martin, F. Brochard-Wyart, Viscous bursting of suspended films. Phys. Rev. Lett. 75, 3886–3889 (1995)

    Article  Google Scholar 

  8. P.G. de Gennes, F. Brochard-Wyart, D. Quéré Gouttes, bulles, perles et ondes (translated by K. Okuyama), 2nd edn. (Yoshioka Shoten, Kyoto, 2008)

    Google Scholar 

  9. J.F. de la Mora, The fluid dynamics of Taylor cones. Annu. Rev. Fluid Mech. 39, 217–243 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Duchemin, S. Popinet, C. Josserand, S. Zaleski, Jet formation in bubbles bursting at a free surface. Phys. Fluids 14, 3000–3008 (2002)

    Article  MATH  Google Scholar 

  11. Fluent Inc., FLUENT \(6.2\) User’s Guide. Lebanon, NH (2005)

    Google Scholar 

  12. M. Iguchi, O.J. Ilegbusi, Modeling Multiphase Materials Processes (Springer, 2010)

    Google Scholar 

  13. O.J. Ilegbusi, M. Iguchi, W. Wahnsiedler, Mathematical and Physical Modeling of Materials Processing Operations (Chapman & Hall/CRC, 1999)

    Google Scholar 

  14. F. Knelman, N. Dombrowski, D.M. Newitt, Mechanism of the bursting bubbles. Nature 173, 261 (1954)

    Article  Google Scholar 

  15. N. Kochi, Y. Ueda, T. Uemura, T. Ishii, M. Iguchi, ISIJ. Int. 51, 1011–1013 (2011)

    Article  Google Scholar 

  16. D.R. Lide, CRC Handbook of Chemistry and Physics (CRC Press, 1998)

    Google Scholar 

  17. F.R.S. Lord, Rayleigh, On the instability of jets. Proc. Lond. Math. Soc. 10, 4–12 (1878)

    MathSciNet  MATH  Google Scholar 

  18. F. MacIntyre, Flow patterns in breaking bubbles. J. Geophys. Res. 77, 5211–5228 (1972)

    Article  Google Scholar 

  19. D. Mazumdar, J.W. Evans, Modeling of Steelmalking Processes (CRC Press, 2010)

    Google Scholar 

  20. J.R. Melcher, C.V. Smith Jr., Electrohydrodynamic charge relaxation and interfacial perpendicular-field instability. Phys. Fluids 12, 778–790 (1969)

    Article  Google Scholar 

  21. A.B. Pandit, J.F. Davidson, Hydrodynamics of the rupture of thin liquid films. J. Fluid Mech. 212, 11–24 (1990)

    Article  Google Scholar 

  22. G. Reiter, K. Schwerdtfeger, Observations of physical phenomena occurring during passage of bubbles through liquid/liquid interfaces. ISIJ Int. 32, 50–56 (1992)

    Article  Google Scholar 

  23. G. Reiter, K. Schwerdtfeger, Characteristics of entrainment at liquid/liquid interfaces due to rising bubbles. ISIJ Int. 32, 57–65 (1992)

    Article  Google Scholar 

  24. W.D. Ristenpart, J.C. Bird, A. Belmonte, F. Dollar, H.A. Stone, Non-coalescence of oppositely charged drops. Nature 461, 377–380 (2009)

    Article  Google Scholar 

  25. Y. Sahai, G.R. St Pierre, Advances in Transport Processes in Metallurgical Systems (Elsevier, 1992)

    Google Scholar 

  26. N. Savva, J.W.M. Bush, Viscous sheet retraction. J. Fluid Mech. 626, 211–240 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Szekely, G. Carsson, L. Helle, Ladle Metallurgy (Springer, 1989)

    Google Scholar 

  28. G. Taylor, The dynamics of thin sheets of fluid III Disintegration of fluid sheets. Proc. R. Soc. Lond. A 253, 313–321 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  29. G. Taylor, Disintegration of water drops in an electric field. Proc. R. Soc. Lond. A 280, 383–397 (1964)

    Article  MATH  Google Scholar 

  30. G. Taylor, Electrically driven jets. Proc. R. Soc. Lond. A 313, 453–475 (1969)

    Article  Google Scholar 

  31. G.I. Taylor, A.D. McEwan, The stability of a horizontal fluid interface in a vertical electric field. J. Fluid Mech. 22, 1–15 (1965)

    Article  MATH  Google Scholar 

  32. Y. Ueda, N. Kochi, T. Uemura, T. Ishii, M. Iguchi, ISIJ. Int. 11, 1940–1942 (2011)

    Article  Google Scholar 

  33. T. Uemura, Y. Ueda, M. Iguchi, Europhys. Lett. 92, 34004 (2010)

    Article  Google Scholar 

  34. T. Uemura, Y. Ueda, M. Iguchi, J. Vis. 13, 85–87 (2010)

    Article  Google Scholar 

  35. T. Uemura, Y. Ueda, M. Iguchi, J. Vis. 14, 95–97 (2011)

    Article  Google Scholar 

  36. T. Uemura, Y. Ueda, M. Iguchi, J. Vis. 15, 119–124 (2012)

    Article  Google Scholar 

  37. C. Weber, Zum Zerfall eines Flüssigkeitsstrahles. Z. Angew. Math. Mech. 11, 136–154 (1931)

    Article  MATH  Google Scholar 

  38. S. Yamashita, M. Iguchi, Mechanism of mold powder entrapment caused by large argon bubble in continuous casting mold. ISIJ Int. 41, 1529–1531 (2001)

    Article  Google Scholar 

  39. B.W. Zeff, B. Kleber, J. Fineberg, D.P. Lathrop, Singularity dynamics in curvature collapse and jet eruption on a fluid surface. Nature 403, 401–404 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manabu Iguchi .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Japan KK

About this chapter

Cite this chapter

Uemura, T., Iguchi, M., Ueda, Y. (2018). Behavior of a Rising Bubble Through an Oil/Water Interface. In: Flow Visualization in Materials Processing. Mathematics for Industry, vol 27. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56567-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56567-3_5

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56565-9

  • Online ISBN: 978-4-431-56567-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics