Skip to main content

Fluid-Flow Properties of Fault Zones

  • Chapter
  • First Online:
Involvement of Fluids in Earthquake Ruptures

Abstract

There is an increasing recognition of the important role played by the fluid-flow properties of fault zones in controlling earthquake rupture processes. As introduced in Chaps. 1 and 2, changes in fluid pressure within a fault zone mechanically affect the static and dynamic frictional behavior of the fault. The fluid-flow properties of the fault zone play an important role in determining fluid pressures. Since fault-zone structure is the primary control on the fluid-flow properties of fault zones, quantitative estimates of fluid-flow processes at fault zones require an accurate conceptual model of the fault-zone structure that is coupled with the fluid-flow properties of each of the fault-zone components. Field investigations of fault-zone structures are thus fundamental to obtaining an improved understanding of the fluid-flow properties of faults. The permeability structures of fault zones are highly variable, reflecting the heterogeneous nature of internal fault-zone structures. In this chapter, the generalized structure of a brittle fault zone is introduced and the development of such structure is described in Sects. 3.1 and 3.2. Section 3.3 provides an outline of the permeability structure expected for the conceptual fault-zone structure model. This section presents the permeability structures observed in natural fault-zone examples and describes the evolution of fault-zone permeability deduced from laboratory experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrews DJ (1976) Rupture propagation with finite stress in antiplane strain. J Geophys Res 81:3575–3582. doi:10.1029/JB081i020p03575

    Article  Google Scholar 

  • Bangs NL, Mcintosh KD, Silver EA, et al (2015) Fluid accumulation along the Costa Rica subduction thrust and development of the seismogenic zone. J Geophys Res 67–86. doi:10.1002/2014JB011265

  • Barenblatt G (1959) The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks. J Appl Math Mech 23:622–636. doi:10.1016/0021-8928(59)90157-1

    Article  Google Scholar 

  • Bekins BA, McCaffrey AM, Dreiss SJ (1995) Episodic and constant flow models for the origin of low-chloride waters in a modern accretionary complex. Water Resour Res 31:3205–3215. doi:10.1029/95WR02569

    Article  Google Scholar 

  • Biegel RL, Sammis CG (2004) Relating fault mechanics to fault zone structure. Adv Geophys 47:65–111. doi:10.1016/S0065-2687(04)47002-2

    Article  Google Scholar 

  • Blenkinsop TG (1989) Thickness—displacement relationships for deformation zones: discussion. J Struct Geol 11:1051–1053. doi:10.1016/0191-8141(89)90056-4

    Article  Google Scholar 

  • Boutareaud S, Wibberley CAJ, Fabbri O, Shimamoto T (2008) Permeability structure and co-seismic thermal pressurization on fault branches: insights from the Usukidani fault, Japan. Geol Soc Lond Spec Publ 299:341–361. doi:10.1144/SP299.20

    Article  Google Scholar 

  • Brown KM, Moore JC (1993) Comment on “Anisotropic permeability and tortuosity in deformed wet sediments” by J. Arch and A. Maltman. J Geophys Res 98:17859–17864. doi:10.1029/93JB01298

    Article  Google Scholar 

  • Brown KM, Bekins B, Clennell B, et al (1994) Heterogeneous hydrofracture development and accretionary fault dynamics. Geology 22:259–262. doi:10.1130/0091-7613(1994)022<0259:HHDAAF>2.3.CO;2

  • Byerlee J (1993) Model for episodic flow of high-pressure water in fault zones before earthquakes. Geology 21:303–306. doi:10.1130/0091-7613(1993)021<0303:MFEFOH>2.3.CO;2

    Article  Google Scholar 

  • Caine JS, Evans JP, Forster CB (1996) Fault zone architecture and permeability structure. Geology 24:1025–1028. doi:10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2

  • Chester FM, Logan JM (1986) Implications for mechanical properties of brittle faults from observations of the Punchbowl fault zone, California. Pure Appl Geophys 124:79–106. doi:10.1007/BF00875720

    Article  Google Scholar 

  • Chester FM, Evans JP, Biegel R (1993) Intemal structure and weakening mechanisms of the San Andreas fault. J Geophys Res 98:771–786. doi:10.1029/92JB01866

    Article  Google Scholar 

  • Chester FM, Chester JS, Kirschner DL et al (2004) Structure of large-displacement, strike-slip fault zones in the brittle continental crust. In: Karner GD et al (eds) Rheology and deformation in the lithosphere at continental margins, Columbia University Press, New York, pp 223–260

    Google Scholar 

  • Chester JS, Chester FM, Kronenberg AK (2005) Fracture surface energy of the Punchbowl fault, San Andreas system. Nature 437:133–136. doi:10.1038/nature03942

    Article  Google Scholar 

  • Chester FM, Rowe C, Ujiie K et al (2013) Structure and composition of the plate-boundary slip zone for the 2011 Tohoku-Oki earthquake. Science 342:1208–1211. doi:10.1126/science.1243719

    Article  Google Scholar 

  • Cowie PA, Scholz CH (1992) Physical explanation for the displacement-length relationship of faults using a post-yield fracture mechanics model. J Struct Geol 14:1133–1148. doi:10.1016/0191-8141(92)90065-5

    Article  Google Scholar 

  • Crawford BR, Faulkner DR, Rutter EH (2008) Strength, porosity, and permeability development during hydrostatic and shear loading of synthetic quartz-clay fault gouge. J Geophys Res 113:1–14. doi:10.1029/2006JB004634

    Article  Google Scholar 

  • Davis GH, Reynolds SJ (1996) Structural geology of rocks and regions. 2nd edn. Wiley, USA

    Google Scholar 

  • Dor O, Rockwell TK, Ben-Zion Y (2006) Geological observations of damage asymmetry in the structure of the San Jacinto, San Andreas and Punchbowl faults in Southern California: a possible indicator for preferred rupture propagation direction. Pure Appl Geophys 163:301–349. doi:10.1007/s00024-005-0023-9

    Article  Google Scholar 

  • Evans JP, Forster CB, Goddard JV (1997) Permeability of fault-related rocks, and implications for hydraulic structure of fault zones. J Struct Geol 19:1393–1404. doi:10.1016/S0191-8141(97)00057-6

    Article  Google Scholar 

  • Faulkner DR, Rutter EH (1998) The gas permeability of clay-bearing fault gouge at 20 °C. Geol Soc Lond Spec Publ 147:147–156. doi:10.1144/gsl.sp.1998.147.01.10

    Article  Google Scholar 

  • Faulkner DR, Rutter EH (2000) Comparisons of water and argon permeability in natural clay-bearing fault gouge under high pressure at 20 °C. J Geophys Res 105:16415–16426. doi:10.1029/2000JB900134

    Article  Google Scholar 

  • Faulkner DR, Lewis AC, Rutter EH (2003) On the internal structure and mechanics of large strike-slip fault zones: field observations of the Carboneras fault in southeastern Spain. Tectonophysics 367:235–251. doi:10.1016/S0040-1951(03)00134-3

    Article  Google Scholar 

  • Faulkner DR, Jackson CAL, Lunn RJ et al (2010) A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. J Struct Geol 32:1557–1575. doi:10.1016/j.jsg.2010.06.009

    Article  Google Scholar 

  • Faulkner DR, Mitchell TM, Jensen E, Cembrano J (2011) Scaling of fault damage zones with displacement and the implications for fault growth processes. J Geophys Res 116:B05403. doi:10.1029/2010JB007788

    Article  Google Scholar 

  • Fischer GJ, Paterson MS (1992) Measurement of permeability and storage capacity in rocks during deformation at high temperature and pressure. In: Evans B, Wong T-F (eds) Fault mechanics and transport properties of rocks, International geophysics series, Academic Press, London, pp 213–252

    Google Scholar 

  • Fisher D, Byrne T (1990) The character and distribution of mineralized fractures in the Kodiak Formation, Alaska: implications for fluid flow in an underthrust sequence. J Geophys Res 95:9069–9080. doi:10.1029/JB095iB06p09069

    Article  Google Scholar 

  • Fossen H (2010) Structural geology. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Fossen H, Schultz RA, Shipton ZK, Mair K (2007) Deformation bands in sandstone: a review. J Geol Soc London 164:755–769. doi:10.1144/0016-76492006-036

    Article  Google Scholar 

  • Henry P, Wang C (1991) Modeling of fluid flow and pore pressure at the toe of Oregon and Barbados accretionary wedges. J Geophys Res 96:20109–20130. doi:10.1029/91JB01908

    Article  Google Scholar 

  • Hoagland RG, Hahn GT, Rosenfield AR (1973) Influence of microstructure on fracture propagation in rock. Rock Mech 5:77–106. doi:10.1007/BF01240160

    Article  Google Scholar 

  • Hull J (1988) Thickness-displacement relationships for deformation zones. J Struct Geol 10:431–435. doi:10.1016/0191-8141(88)90020-X

    Article  Google Scholar 

  • Ida Y (1972) Cohesive force across the tip of a longitudinal-shear crack and Griffith’s specific surface energy. J Geophys Res 77:3796–3805. doi:10.1029/JB077i020p03796

    Article  Google Scholar 

  • Ikari MJ, Saffer DM, Marone C (2009) Frictional and hydrologic properties of a major splay fault system, Nankai subduction zone. Geophys Res Lett 36:L20313. doi:10.1029/2009GL040009

    Article  Google Scholar 

  • Kimura G, Screaton EJ, Curewitz D et al (2008) NanTroSEIZE stage 1A: NanTroSEIZE shallow megasplay and frontal thrusts. Integrated ocean drilling program prelim reports, 1–59. doi:10.2204/iodp.pr.316.2008

  • Kinoshita M, Tobin H, Ashi J et al (2009) Proc. IODP, 314/315/316: Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.314315316.2009

  • Kranz RL, Saltzman JS, Blacic JD (1990) Hydraulic diffusivity measurements on laboratory rock samples using an oscillating pore pressure method. Int J Rock Mech Min Sci 27:345–352. doi:10.1016/0148-9062(90)92709-N

    Article  Google Scholar 

  • Lachenbruch AH (1980) Frictional heating, fluid pressure, and the resistance to fault motion. J Geophys Res 85:6097–6112. doi:10.1029/JB085iB11p06097

    Article  Google Scholar 

  • Lin A (2011) Seismic slip recorded by fluidized ultracataclastic veins formed in a coseismic shear zone during the 2008 MW 7.9 Wenchuan earthquake. Geology 39:547–550. doi:10.1130/G32065.1

    Article  Google Scholar 

  • Lin A, Ren Z, Kumahara Y (2010) Structural analysis of the coseismic shear zone of the 2008 Mw 7.9 Wenchuan earthquake, China. J Struct Geol 32:781–791. doi:10.1016/j.jsg.2010.05.004

    Article  Google Scholar 

  • Lockner DA, Byerlee JD, Kuksenko V, Ponomarev A, Sidrin A (1992) Observations of quasi-static fault growth from acoustic emissions. In: Evans B, Wong T-f (eds) Fault mechanics and transport properties of rocks, Academic Press, USA, pp 3–31

    Google Scholar 

  • Lockner DA, Naka H, Tanaka H, et al (2000) Permeability and strength of core samples from the Nojima fault of the 1995 Kobe earthquake. In: Ito H, Fujimoto K, Tanaka H, Lockner D (eds) Proceedings of the international workshop on the Nojima fault core and borehole data analysis. Preliminary report, pp 147–152

    Google Scholar 

  • Lockner DA, Tanaka H, Ito H et al (2009) Geometry of the Nojima fault at Nojima-Hirabayashi, Japan—I. A simple damage structure inferred from borehole core permeability. Pure Appl Geophys 166:1649–1667. doi:10.1007/s00024-009-0515-0

    Article  Google Scholar 

  • Lunn RJ, Willson JP, Shipton ZK, Moir H (2008) Simulating brittle fault growth from linkage of preexisting structures. J Geophys Res Solid Earth 113:B07403. doi:10.1029/2007JB005388

    Article  Google Scholar 

  • Marone C, Raleigh CB, Scholz CH (1990) Frictional behavior and constitutive modeling of simulated fault Gouge. J Geophys Res 95:7007–7025. doi:10.1029/JB095iB05p07007

    Article  Google Scholar 

  • Mase CW, Smith L (1987) Effects of frictional heating on the thermal, hydrologic, and mechanical response of a fault. J Geophys Res 92:6249–6272. doi:10.1029/JB092iB07p06249

    Article  Google Scholar 

  • Meneghini F, Moore JC (2007) Deformation and hydrofracture in a subduction thrust at seismogenic depths: the Rodeo Cove thrust zone, Marin Headlands, California. Bull Geol Soc Am 119:174–183. doi:10.1130/B25807.1

    Article  Google Scholar 

  • Micarelli L, Benedicto A, Wibberley CAJ (2006) Structural evolution and permeability of normal fault zones in highly porous carbonate rocks. J Struct Geol 28:1214–1227. doi:10.1016/j.jsg.2006.03.036

    Article  Google Scholar 

  • Mitchell TM, Faulkner DR (2009) The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: a field study from the Atacama fault system, northern Chile. J Struct Geol 31:802–816. doi:10.1016/j.jsg.2009.05.002

    Article  Google Scholar 

  • Mitchell TM, Faulkner DR (2012) Towards quantifying the matrix permeability of fault damage zones in low porosity rocks. Earth Planet Sci Lett 339–340:24–31. doi:10.1016/j.epsl.2012.05.014

    Article  Google Scholar 

  • Mitchell TM, Ben-Zion Y, Shimamoto T (2011) Pulverized fault rocks and damage asymmetry along the Arima-Takatsuki Tectonic Line, Japan. Earth Planet Sci Lett 308:284–297. doi:10.1016/j.epsl.2011.04.023

    Article  Google Scholar 

  • Mizoguchi K, Hirose T, Shimamoto T, Fukuyama E (2008) Internal structure and permeability of the Nojima fault, southwest Japan. J Struct Geol 30:513–524. doi:10.1016/j.jsg.2007.12.002

    Article  Google Scholar 

  • Moore JC, Orange D, Kulm LD (1990) Interrelationship of fluid venting and structural evolution: Alvin observations from the frontal accretionary prism, Oregon. J Geophys Res 95:8795–8808. doi:10.1029/JB095iB06p08795

    Article  Google Scholar 

  • Mori J, Chester FM, Eguchi N, Toczko S (2012) Japan Trench Fast Earthquake Drilling Project (JFAST). IODP Sci Prosp 343. doi:10.2204/iodp.sp.343.2012

  • Morrow CA, Byerlee JD (1989) Experimental studies of compaction and dilatancy during frictional sliding on faults containing gouge. J Struct Geol 11:815–815. doi:10.1016/0191-8141(89)90100-4

  • Morrow C, Shi LQ, Byerlee J (1981) Permeability and strength of San Andreas Fault gouge under high pressure. Geophys Res Lett 8:325–328. doi:10.1029/GL008i004p00325

    Article  Google Scholar 

  • Morrow CA, Shi LQ, Byerlee JD (1984) Permeability of fault gouge under confining pressure and shear stress. J Geophys Res 89:3193–3200. doi:10.1029/JB089iB05p03193

    Article  Google Scholar 

  • Noda H, Shimamoto T (2005) Thermal pressurization and slip-weakening distance of a fault: an example of the Hanaore fault, southwest Japan. Bull Seismol Soc Am 95:1224–1233. doi:10.1785/0120040089

    Article  Google Scholar 

  • Oda M, Takemura T, Aoki T (2002) Damage growth and permeability change in triaxial compression tests of Inada granite. Mech Mater 34:313–331. doi:10.1016/S0167-6636(02)00115-1

    Article  Google Scholar 

  • Okazaki K, Katayama I, Noda H (2013) Shear-induced permeability anisotropy of simulated serpentinite gouge produced by triaxial deformation experiments. Geophys Res Lett 40:1290–1294. doi:10.1002/grl.50302

    Article  Google Scholar 

  • Otsuki K (1978) On the relationship between the width of shear zone and the displacement along fault. J Geol Soc Japan 84:661–669. doi:10.5575/geosoc.84.661

    Article  Google Scholar 

  • Platt JD, Rudnicki JW, Rice JR (2014) Stability and localization of rapid shear in fluid-saturated fault gouge: 2. Localized zone width and strength evolution. J Geophys Res Solid Earth 119:4334–4359. doi:10.1002/2013JB010711

    Article  Google Scholar 

  • Power WL, Tullis TE (1991) Euclidean and fractal models for the description of rock surface roughness. J Geophys Res 96:415–424. doi:10.1029/90JB02107

    Article  Google Scholar 

  • Power WL, Tullis TE, Weeks JD (1988) Roughness and wear during brittle faulting. J Geophys Res 93:15268–15278. doi:10.1029/JB093iB12p15268

    Article  Google Scholar 

  • Reches Z, Dewers TA (2005) Gouge formation by dynamic pulverization during earthquake rupture. Earth Planet Sci Lett 235:361–374. doi:10.1016/j.epsl.2005.04.009

    Article  Google Scholar 

  • Reches Z, Lockner DA (1994) Nucleation and growth of faults in brittle rocks. J Geophys Res 99:18159–18173. doi:10.1029/94JB00115

    Article  Google Scholar 

  • Rempel AW, Rice JR (2006) Thermal pressurization and onset of melting in fault zones. J Geophys Res 111:B09314. doi:10.1029/2006JB004314

    Article  Google Scholar 

  • Rice JR (1992) Fault stress states, pore pressure distributions, and the weakness of the San Andreas fault. In: Evans B, Wong T -F (eds) Fault mechanics and transport properties of rocks, International geophysics series, Academic Press, London, pp 475–503

    Google Scholar 

  • Rowe CD, Moore JC, Remitti F (2013) The thickness of subduction plate boundary faults from the seafloor into the seismogenic zone. Geology 41:991–994. doi:10.1130/G34556.1

    Article  Google Scholar 

  • Saffer DM, Bekins BA (1998) Episodic fluid flow in the Nankai accretionary complex: timescale, geochemistry, flow rates, and fluid budget. J Geophys Res 103:30351–30370. doi:10.1029/98JB01983

    Article  Google Scholar 

  • Saffer DM, Bekins BA (1999) Fluid budgets at convergent plate margins: Implications for the extent and duration of fault-zone dilation. Geology 27:1095–1098. doi:10.1130/0091-7613(1999)027<1095:FBACPM>2.3.CO;2

  • Samuelson J, Elsworth D, Marone C (2009) Shear-induced dilatancy of fluid-saturated faults: experiment and theory. J Geophys Res 114:B12404. doi:10.1029/2008JB006273

    Article  Google Scholar 

  • Savage HM, Brodsky EE (2011) Collateral damage: evolution with displacement of fracture distribution and secondary fault strands in fault damage zones. J Geophys Res 116:B03405. doi:10.1029/2010JB007665

    Article  Google Scholar 

  • Scholz CH (1987) Wear and gouge formation in brittle faulting. Geology 15:493–495. doi:10.1130/0091-7613(1987)15<493:WAGFIB>2.0.CO;2

  • Scholz CH, Anders MH (1994) The permeability of faults. In: Hickman S, Sibson R, Bruhn R (eds) Proceedings of the workshop LXIII the mechanical involvement of fluids in faulting. U.S. Geological Survey Open-File Report 94-228:247–253

    Google Scholar 

  • Scholz CH, Dawers NH, Yu J-Z et al (1993) Fault growth and fault scaling laws: preliminary results. J Geophys Res 98:21951–21961. doi:10.1029/93JB01008

    Article  Google Scholar 

  • Screaton EJ, Wuthrich DR, Dreiss SJ (1990) Permeabilities, fluid pressures, and flow rates in the Barbados ridge complex. J Geophys Res 95:8997–9007. doi:10.1029/JB095iB06p08997

    Article  Google Scholar 

  • Seagall P, Pollard DD (1983) Nucleation and growth of strike slip faults in granite. J Geophys Res 88:555–568. doi:10.1029/JB088iB01p00555

    Article  Google Scholar 

  • Seront B, Wong TF, Caine JS et al (1998) Laboratory characterization of hydromechanical properties of a seismogenic normal fault system. J Struct Geol 20:865–881. doi:10.1016/S0191-8141(98)00023-6

    Article  Google Scholar 

  • Shipley TH, Moore GF, Bangs NL et al (1994) Seismically inferred dilatancy distribution, northern Barbados Ridge decollement: implications for fluid migration and fault strength. Geology 22:411–414. doi:10.1130/0091-7613(1994)022<0411:SIDDNB>2.3.CO;2

  • Shipton ZK, Soden A, Kirkpatrick JD et al (2006) How thick is a fault? Fault displacement thickness scaling revisited In: Abercrombie R, McGarr A, Di Toro G, Kanamori H (eds) Earthquakes: radiated energy and the physics of faulting, American Geophysical Union, Washington, D.C., pp 193–198. doi:10.1029/170GM19

  • Sibson RH (1975) Generation of pseudotachylyte by ancient seismic faulting. Geophys J R Astr Soc 43:775–794. doi:10.1111/j.1365-246X.1975.tb06195.x

    Article  Google Scholar 

  • Sibson RH (1977) Fault rocks and fault mechanisms. J Geol Soc London 133:191–213. doi:10.1144/gsjgs.133.3.0191

    Article  Google Scholar 

  • Sibson RH (1986) Brecciation processes in fault zones: inferences from earthquake rupturing. Pure Appl Geophys 124:159–175. doi:10.1007/BF00875724

    Article  Google Scholar 

  • Sibson RH (1992) Implications of fault-valve behaviour for rupture nucleation and recurrence. Tectonophysics 211:283–293. doi:10.1016/0040-1951(92)90065-E

    Article  Google Scholar 

  • Sibson RH (2003) Thickness of the seismic slip zone. Bull Seismol Soc Am 93:1169–1178. doi:10.1785/0120020061

    Article  Google Scholar 

  • Takahashi M (2003) Permeability change during experimental fault smearing. J Geophys Res 108:2235. doi:10.1029/2002JB001984

    Google Scholar 

  • Takahashi M, Mizoguchi K, Kitamura K, Masuda K (2007) Effects of clay content on the frictional strength and fluid transport property of faults. J Geophys Res 112:B08206. doi:10.1029/2006JB004678

    Google Scholar 

  • Tanikawa W, Shimamoto T (2006) Klinkenberg effect for gas permeability and its comparison to water permeability for porous sedimentary rocks. Hydrol Earth Syst Sci Discuss 3:1315–1338. doi:10.5194/hessd-3-1315-2006

    Article  Google Scholar 

  • Tanikawa W, Hirose T, Mukoyoshi H et al (2013) Fluid transport properties in sediments and their role in large slip near the surface of the plate boundary fault in the Japan Trench. Earth Planet Sci Lett 382:150–160. doi:10.1016/j.epsl.2013.08.052

    Article  Google Scholar 

  • Teufel LW (1981) Pore volume changes during frictional sliding of simulated faults. In: Mechanical behaviour of crustal rocks. In: Carter NL, Friedman M, Logan JM, Stearns DW (eds) Mechanical behavior of crustal rocks. The Handin volume. American Geophysical Union, Washington, D.C., Geophysical monograph 24, pp 135–145. doi:10.1029/GM024p0135

  • Togo T, Shimamoto T, Ma S et al (2011) Internal structure of Longmenshan fault zone at Hongkou outcrop, Sichuan, China, that caused the 2008 Wenchuan earthquake. Earthq Sci 24:249–265. doi:10.1007/s11589-011-0789-z

    Article  Google Scholar 

  • Tsutsumi A, Nishino S, Mizoguchi K et al (2004) Principal fault zone width and permeability of the active Neodani fault, Nobi fault system, southwest Japan. Tectonophysics 379:93–108. doi:10.1016/j.tecto.2003.10.007

    Article  Google Scholar 

  • Uehara S, Shimamoto T (2004) Gas permeability evolution of cataclasite and fault gouge in triaxial compression and implications for changes in fault-zone permeability structure through the earthquake cycle. Tectonophysics 378:183–195. doi:10.1016/j.tecto.2003.09.007

    Article  Google Scholar 

  • Vermilye JM, Scholz CH (1998) The process zone: a microstructural view of fault growth. J Geophys Res Earth 103:12223–12237. doi:10.1029/98JB00957

    Article  Google Scholar 

  • Vrolijk P (1987) Tectonically driven fluid flow in the Kodiak accretionary complex, Alaska. Geology 15:466–469. doi:10.1130/0091-7613(1987)15<466:TDFFIT>2.0.CO;2

  • Wibberley CAJ, Shimamoto T (2003) Internal structure and permeability of major strike-slip fault zones: the median tectonic line in Mie Prefecture, southwest Japan. J Struct Geol 25:59–78. doi:10.1016/S0191-8141(02)00014-7

    Article  Google Scholar 

  • Wibberley CAJ, Shimamoto T (2005) Earthquake slip weakening and asperities explained by thermal pressurization. Nature 436:689–692. doi:10.1038/nature03901

    Article  Google Scholar 

  • Wibberley CAJ, Yielding G, Di Toro G (2008) Recent advances in the understanding of fault zone internal structure: a review. In: Wibberley CAJ, Kurz W, Imber J, Holdsworth RE, Collettini C (eds) Structure of fault zones: implications for mechanical and fluid-flow properties. Geol Soc Lond Spec Publ 299:5–33. doi:10.1144/SP299.2

  • Wilson JE, Chester JS, Chester FM (2003) Microfracture analysis of fault growth and wear processes, Punchbowl Fault, San Andreas system, California. J Struct Geol 25:1855–1873. doi:10.1016/S0191-8141(03)00036-1

    Article  Google Scholar 

  • Wilson B, Dewers T, Reches Z, James B (2005) Particle size and energetics of gouge from earthquake rupture zones. Nature 434:749–752. doi:10.1038/nature03433

    Article  Google Scholar 

  • Yoshioka N (1986) Fracture energy and the variation of gouge and surface roughness during frictional sliding of rocks. J Phys Earth 34:335–355. doi:10.4294/jpe1952.34.335

    Article  Google Scholar 

  • Zhang S, Tullis TE (1998) The effect of fault slip on permeability and permeability anisotropy in quartz gouge. Tectonophysics 295:41–52. doi:10.1016/S0040-1951(98)00114-0

    Article  Google Scholar 

  • Zhang S, Tullis TE, Scruggs VJ (1999) Permeability anisotropy and pressure dependency of permeability in experimentally sheared gouge materials. J Struct Geol 21:795–806. doi:10.1016/S0191-8141(99)00080-2

    Article  Google Scholar 

  • Zhang S, Tullis TE, Scruggs VJ (2001) Implications of permeability and its anisotropy in a mica gouge for pore pressures in fault zones. Tectonophysics 335:37–50. doi:10.1016/S0040-1951(01)00044-0

    Article  Google Scholar 

  • Zoback MD, Byerlee JD (1975) The effect of microcrack dilatancy on the permeability of Westerly granite. J Geophys Res 80:752–755. doi:10.1029/JB080i005p00752

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruo Yamashita .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Japan KK

About this chapter

Cite this chapter

Yamashita, T., Tsutsumi, A. (2018). Fluid-Flow Properties of Fault Zones. In: Involvement of Fluids in Earthquake Ruptures. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56562-8_3

Download citation

Publish with us

Policies and ethics