Skip to main content

Evolution of Cognitive Brains: Mammals

  • Chapter
  • First Online:
Evolution of the Brain, Cognition, and Emotion in Vertebrates

Part of the book series: Brain Science ((BRASC))

Abstract

In mammals, detailed information about higher cognitive abilities or “intelligence” is restricted to representatives of rodents, artiodactyls, carnivores, cetaceans, elephants, and primates. Tool use as well as “technical” problem-solving is present in most species of these taxa. In string-pulling experiments, apes, monkeys, dogs, and elephants were successful but with no sign of insight into mechanisms. Mirror use is demonstrated in apes, monkeys, and pigs, while mirror self-recognition is found only in the great apes, magpies, and possibly dolphins and elephants. Gaze following is documented in primates, dogs, and wolves. Metacognition was demonstrated in apes, macaques, dolphins, and rats. Finally, signs of a theory of mind are found in chimpanzees and rhesus monkeys and questionable in dogs and wolves. Neither absolute nor relative brain size (uncorrected or corrected for body size) are good predictors for higher cognitive abilities. The number of cortical neurons appears to be a better predictor of intelligence but does not solve the paradox of elephants and cetaceans, which have at least several billion cortical neurons like the great apes, while being less intelligent. The best fit is obtained, when parameters that directly determine neuronal information processing capacity, i.e., cortical interneuronal distance and axonal conduction velocity, are also taken into account. Here, primates excel, followed by carnivores, while the large-brained elephants and cetaceans perform poorly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bates LA, Byrne RW (2010) Imitation: what animal imitation tells us about animal cognition. Wiley Interdiscip Rev Cogn Sci 1:685–695

    Article  PubMed  Google Scholar 

  • Berwick RC, Okanoya K, Beckers GJL, Bolhuis JJ (2011) Songs to syntax: the linguistics of bird song. Trends Cogn Sci 15:113–121. doi:10.1016/j.tics.2011.01.002

    Article  PubMed  Google Scholar 

  • Horowitz A (2011) Theory of mind in dogs? Examining method and concept. Learn Behav 39(4):314–317. doi:10.3758/s13420-011-0041-7

    Article  PubMed  Google Scholar 

  • Benson-Amram S, Dantzer B, Stricker G, Swanson EM, Holekamp KE (2015) Brain size predicts problem-solving ability in mammalian carnivores. Proc Natl Acad Sci U S A 113(9):2532–2537. doi:10.1073/pnas.1505913113

    Article  Google Scholar 

  • Blaisdell AP, Sawa K, Leising KJ, Waldmann MR (2006) Causal reasoning in rats. Science 311:1020–1022

    Article  CAS  PubMed  Google Scholar 

  • Bräuer J, Call J, Tomasello M (2005) All great ape species follow gaze to distant locations and around barriers. J Comp Psychol 119:145–154

    Article  PubMed  Google Scholar 

  • Broom DM, Sena H, Moynihan KL (2009) Pigs learn what a mirror image represents and use it to obtain information. Anim Behav 78:1037–1041

    Article  Google Scholar 

  • Brown DH, Norris KS (1956) Observations of captive and wild cetaceans. J Mammal 37:311–326

    Article  Google Scholar 

  • Byrne R (1995) The thinking ape. Evolutionary origins of intelligence. Oxford University Press, Oxford

    Book  Google Scholar 

  • Byrne RW, Bates LA (2011) Cognition in the wild: exploring animal minds with observational evidence. Biol Lett 7(4). doi:10.1098/rsbl.2011.0352

  • Byrne R, Bates L, Moss CJ (2009) Elephant cognition in primate perspective. Compar Cogn Behav Rev 4:1–15

    Google Scholar 

  • Carlier P, Jamon M (2006) Observational learning in C57BL/6j mice. Behav Brain Res 174:125–131

    Article  PubMed  Google Scholar 

  • Changizi MA (2001) Principles underlying mammalian neocortical scaling. Biol Cybern 84:207–215. doi:10.1007/s004220000205

    Article  CAS  PubMed  Google Scholar 

  • Cozzi B, Povinelli M, Ballarin C, Granato A (2014) The brain of the horse: weight and cephalization quotients. Brain Behav Evol 83:9–16. doi:10.1159/000356527

    Article  PubMed  Google Scholar 

  • Delfour F, Marten K (2001) Mirror image processing in three marine mammal species: killer whales (Orcinus orca), false killer whales (Pseudorca crassidens) and California sea lions (Zalophus Californicus). J Behav Processes 53:181–190

    Article  CAS  Google Scholar 

  • Emery NJ, Clayton NS (2009) Tool use and physical cognition in birds and mammals. Curr Opin Neurobiol 19:27–33

    Article  CAS  PubMed  Google Scholar 

  • Eriksen N, Pakkenberg B (2007) Total neocortical cell numbers in the mysticete brain. Anat Rec 290:83–95

    Article  Google Scholar 

  • Fichtel C, Kappeler PM (2010) Human universals and primate symplesiomorphies: establishing the lemur baseline. In: Kappeler PM, Silk J (eds) Mind the gap: tracing the origins of human universals. Springer, Heidelberg, pp 395–426

    Chapter  Google Scholar 

  • Fitch WT, Hauser MD (2004) Computational constraints on syntactic processing in a nonhuman primate. Science 303:377–380

    Article  CAS  PubMed  Google Scholar 

  • Foote AL, Crystal JD (2007) Metacognition in the rat. Curr Biol 17:551–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallup GG Jr (1970) Chimpanzees: self-recognition. Science 167:86–87

    Article  Google Scholar 

  • Guentuerkuen O (2014) Is dolphin cognition special? Brain Behav Evol 83:177–180. doi:10.1159/000357551

    Article  Google Scholar 

  • Hall KRL, Schaller GB (1964) Tool-using behavior of the California sea otter. J Mammal 45:287–298

    Article  Google Scholar 

  • Hart BL, Hart LA, Pinter-Wollman N (2008) Large brains and cognition: where do elephants fit in? Neurosci Biobehav Rev 32:86–98

    Article  PubMed  Google Scholar 

  • Haug H (1987) Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: a stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores, and one elephant). Am J Anat 180:126–142. doi:10.1002/aja.1001800203

    Article  CAS  PubMed  Google Scholar 

  • Herculano-Houzel S, Mota B, Lent R (2006) Cellular scaling rules for rodent brains. Proc Natl Acad Sci 103(32):12138–12143

    Google Scholar 

  • Herculano-Houzel S (2009) The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci 3:31. doi:10.3389/neuro.09.031.2009

    Article  PubMed  PubMed Central  Google Scholar 

  • Herculano-Houzel S (2012) Neuronal scaling rules for primate brains: the primate advantage. Prog Brain Res 195:325–340. doi:10.1016/B978-0-444-53860-4.00015-5

    Article  PubMed  Google Scholar 

  • Herculano-Houzel S, Avelino-de-Souza K, Neves K, Porfírio J, Messeder D, Mattos Feijó L, Maldonado J, Manger PR (2014) The elephant brain in numbers. Front Neuroanat 8:46. doi:10.3389/fnana.2014.00046

    PubMed  PubMed Central  Google Scholar 

  • Herculano-Houzel S, Collins CE, Wong P, Kaas JH (2007) Cellular scaling rules for primate brains. Proc Natl Acad Sci U S A 104:3562–3567. doi:10.1073/pnas.0611396104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herculano-Houzel S, Catania K, Manger PR, Kaas JH (2015) Mammalian brains are made of these: a dataset of the numbers and densities of neuronal and nonneuronal cells in the brain of Glires, primates, scandentiam eulipotyphlans, afrotherians and artiodactyls, and their relationship with body mass. Brain Behav Evol 86:145–163. doi:10.1159/000437413

    Article  PubMed  Google Scholar 

  • Herman LM (2012) Body and self in dolphins. Cons Cogn 21:526–545

    Article  Google Scholar 

  • Hobhouse LT (1915) Mind in evolution. Macmillan, London

    Google Scholar 

  • Hofman MA (2012) Design principles of the human brain: an evolutionary perspective. Prog Brain Res 195:373–390. doi:10.1016/B978-0-444-53860-4.00018-0

    Article  PubMed  Google Scholar 

  • Irie-Sugimoto N, Kobayashi T, Sato T, Hasegawa T (2008) Evidence of means-end behavior in Asian elephants (Elephas maximus). Anim Cogn 11:359–365

    Article  PubMed  Google Scholar 

  • Jerison HJ (1973) Evolution of the brain and intelligence. Academic, Amsterdam

    Google Scholar 

  • Kazu RS, Maldonado J, Mota B, Manger PA, Herculano-Houzel S (2014) Cellular scaling rules for the brain of Artiodactyla include a highly folded cortex with few neurons. Front Neuroanat 8:1–19

    Article  Google Scholar 

  • Kendal RL, Custance DM, Kendal JR, Vale G, Stoinski TS, Rakotomalala NL et al (2010) Evidence for social learning in wild lemurs (Lemur catta). Learn Behav 38:220–234

    Article  PubMed  Google Scholar 

  • Kern A, Siebert U, Cozzi B, Hof PR, Oelschläger HHA (2011) Stereology of the neocortex in odontocetes: qualitative, quantitative, and functional implications. Brain Behav Evol 77:79–90. doi:10.1159/000323674

    Article  CAS  PubMed  Google Scholar 

  • Krützen M, Mann J, Heithaus MR, Connor RC, Bejder L, Sherwin WB (2005) Cultural transmission of tool use in bottlenose dolphins. Proc Natl Acad Sci U S A 102:8939–8943

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuczaj SA II, Yeater D (2006) Dolphin imitation: who, what, when, and why? Aquat Mamm 32:413–422

    Article  Google Scholar 

  • Lefebvre L (2012) Primate encephalization. Prog Brain Res 195:393–412. doi:10.1016/B978-0-444-53860-4.00019-2

    Article  PubMed  Google Scholar 

  • Lyons DE, Santos LR (2006) Ecology, domain specificity, and the origins of theory of mind: is competition the catalyst? Philos Compass 5:481–492

    Article  Google Scholar 

  • Manger PR (2013) Questioning the interpretations of behavioral observations of cetaceans: is there really support for a special intellectual status for this mammalian order? Neuroscience 250:664–696. doi:10.1016/j.neuroscience.2013.07.041

    Article  CAS  PubMed  Google Scholar 

  • Marino L (2004) Dolphin cognition. Curr Biol 14:R910–R911

    Article  CAS  PubMed  Google Scholar 

  • Marino L, Connor RC, Fordyce RE, Herman LM, Hof PR, Lefebvre L, Lusseau D, McGowan B, Nimchinsky EA, Pack AA, Rendell L, Reidenberg JS, Reiss D, Uhen MD, Van der Gucht E, Whitehead H (2007) Cetaceans have complex brains for complex cognition. PLoS Biol 5:966–972

    Article  CAS  Google Scholar 

  • Marino L, Butti C, Connor RC, Fordyce RE, Herman LM, Hof PR, Lefebvre L, Lusseau D, McGowan B, Nimchinsky EA, Pack AA, Reidenberg JS, Reiss D, Rendell L, Uhen MD, Van der Gucht E, Whitehead H (2008) A claim in search of evidence: reply to Manger’s thermogenesis hypothesis of cetacean brain structure. Biol Rev 83:417–440

    PubMed  Google Scholar 

  • Mayer C, Call J, Albiach-Serrano A, Visalberghi E, Sabbatini G, Seed A (2014) Abstract knowledge in the broken-string problem: evidence from nonhuman primates and pre-schoolers. PLoS One 9(10):e108597

    Article  PubMed  PubMed Central  Google Scholar 

  • McCowan B, Marino L, Vance E, Walke L, Reiss D (2000) Bubble ring play of bottlenose dolphins (Tursiops truncates): implications for cognition. J Comp Psychol 114:98–106

    Article  CAS  PubMed  Google Scholar 

  • McKenzie T, Cherman T, Bird LR, Naqshbandi M, Roberts WA (2004) Can squirrel monkeys (Saimiri sciureus) plan for the future? Studies of temporal myopia in food choice. Anim Learn Behav 32(4):377–390

    Google Scholar 

  • Miklósi A, Kubinyi E, Topa J, Gacsi M, Varnyi Z, Csanyi V (2003) A simple reason for a big difference: wolves do not look back at humans, but dogs do. Curr Biol 13:763–766

    Article  PubMed  Google Scholar 

  • Michener GR (2004) Hunting techniques and tool use by North American badgers preying on Richardson’s ground squirrels. J Mammal 85:1019–1027. doi:10.1644/BNS-102

    Article  Google Scholar 

  • Minuzo K, Irie N, Hiraiwa-Hasegawa M, Kutsukake N (2015) Asian elephants acquire inaccessible food by blowing. Anim Cogn 19(1):215–222. doi:10.1007/s10071-015-0929-2

    Google Scholar 

  • Mortensen HS, Pakkenberg B, Dam M, Dietz R, Sonne C, Mikkelsen B, Eriksen N (2014) Quantitative relationships in delphinid neocortex. Front Neuroanat 8:1–10

    Article  Google Scholar 

  • Müller CA (2010) Do anvil-using banded mongooses understand means-end relationships? A field experiment. Anim Cogn 13:325–330

    Article  PubMed  Google Scholar 

  • Nissani M (2004) Elephant cognition: a review of recent experiments. Gajah 28:44–52

    Google Scholar 

  • Nissani M (2006) Do Asian elephants (Elephas maximus) apply causal reasoning to tool-use tasks? J Exp Psychol Anim Behav Process 32:91–96

    Article  PubMed  Google Scholar 

  • Okanoya K, Tokimoto N, Kumazawa N, Hihara S, Iriki A (2008) Tool-use training in a species of rodent: the emergence of an optimal motor strategy and functional understanding. PLoS One 3:e1860

    Article  PubMed  PubMed Central  Google Scholar 

  • Pakkenberg B, Gundersen HJG (1997) Neocortical neuron number in humans: effect of sex and age. J Comp Neurol 384:312–320

    Article  CAS  PubMed  Google Scholar 

  • Patterson EM, Mann J (2011) The ecological conditions that favor tool use and innovation in wild bottlenose dolphins (Tursiops sp.) PLoS One 6(7):e22243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plotnik JM, de Waal FBM, Reiss D (2006) Self-recognition in an Asian elephant. Proc Natl Acad Sci U S A 103:17053–17057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Premack D, Woodruff G (1978) Does the chimpanzee have a theory of mind? Behav Brain Sci 4:515–526

    Article  Google Scholar 

  • Premack D (2007) Human and animal cognition: Continuity and discontinuity. Proc Natl Acad Sci 104(35):13861–13867

    Google Scholar 

  • Prior H, Schwarz A, Guentuerkuen O (2008) Mirror-induced behavior in the magpie (Pica pica): evidence of self-recognition. PLoS Biol 6:1642–1650

    Article  CAS  Google Scholar 

  • Range F, Virányi Z (2011) Development of gaze following abilities in wolves (Canis lupus). PLoS One 6:e16888. doi:10.1371/journal.pone.0016888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Range F, Virányi Z (2014) Wolves are better imitators of conspecifics than dogs. PLoS One 9(1):e86559

    Article  PubMed  PubMed Central  Google Scholar 

  • Reiss D, Marino L (2001) Mirror self recognition in the bottlenose dolphin: a case of cognitive convergence. Proc Natl Acad Sci U S A 98:5937–5942. doi:10.1073/pnas.101086398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rensch B, Altevogt R (1955) Zähmung und Dressurleistungen indischer Arbeitselefanten. Z Tierpsychol 11:497–510

    Google Scholar 

  • Riemer S, Müller C, Range F, Huber L (2014) Dogs can learn to attend to connectivity in string pulling tasks. J Comp Psychol 128:31–39. doi:10.1037/a0033202

    Article  PubMed  Google Scholar 

  • Roberts WA (2012) Evidence for future cognition in animals. Learn Motiv 43:169–180

    Article  Google Scholar 

  • Roth G (2013) The long evolution of brains and minds. Springer, Dordrecht

    Book  Google Scholar 

  • Roth G, Dicke U (2005) Evolution of the brain and intelligence. Trends Cogn Sci 9:250–257

    Article  PubMed  Google Scholar 

  • Roth G, Dicke U (2012) Evolution of the brain and intelligence in primates. Prog Brain Res 195:413–430. doi:10.1016/B978-0-444-53860-4.00020-9

    Article  PubMed  Google Scholar 

  • Russel S (1979) Brain site and intelligence: a comparative perspective. In: Oakley DA, Plotkin HC (eds) Brain, Behavior and Evolution. Methuen, London, pp 126–153

    Google Scholar 

  • Seed A, Tomasello M (2010) Primate cognition. Topics Cogn Sci 2:407–419

    Article  Google Scholar 

  • Smith BP, Applebee RG, Litchfield CA (2012) Spontaneous tool-use: an observation of a dingo (Canis dingo) using a table to access an out-of-reach food reward. Behav Processes 89:219–222

    Article  PubMed  Google Scholar 

  • Smith JD (2009) The study of animal metacognition. Trends Cogn Sci 13:389–396

    Article  PubMed  Google Scholar 

  • Taylor AH, Hunt GR, Media FS, Gray RD (2009) Do New Caledonian crows solve physical problems through causal reasoning? Proc R Soc B Biol Sci 276:247–254

    Article  CAS  Google Scholar 

  • Tarver JE, dos Reis M, Mirarab S et al (2016) The interrelationships of placental mammals and the limits of phylogenetic inference. Genome Biol Evol 8:330–344. doi:10.1093/gbe/evv261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Téglás E, Gergely A, Kupán K, Miklósi A, Topál J (2012) Dogs’ gaze following is tuned to human communicative signals. Curr Biol 7:209–212

    Article  Google Scholar 

  • Tomasello M, Hare B, Lehmann H, Call J (2007) Reliance on head versus eyes in the gaze following of great apes and human infants: the cooperative eye hypothesis. J Hum Evol 52:314–320

    Article  PubMed  Google Scholar 

  • Udell MAR, Dorey NR, Wynne CDL (2011) Can your dog read your mind? Understanding the causes of canine perspective taking. Learn Behav 39:289–302. doi:10.3758/s13420-011-0034-6

    Article  PubMed  Google Scholar 

  • Van der Vaart E, Hemelrijk CK (2014) ‘Theory of Mind’ in animals: ways to make progress. Synthese 191(335):354

    Google Scholar 

  • van Dongen PAM (1998) Brain size in vertebrates. In: Nieuwenhuys R, ten Donkelaar HJ, Nicholson C (eds) The central nervous system of vertebrates. Springer, Berlin, pp 2099–2134

    Chapter  Google Scholar 

  • Wallis LJ, Range F, Müller CA, Serisier S, Huber L, Virányi Z (2015) Training for eye contact modulates gaze following in dogs. Anim Behav 106:27–35

    Google Scholar 

  • Zhang K, Sejnowski TJ (2000) A universal scaling law between gray matter and white matter of cerebral cortex. Proc Natl Acad Sci U S A 97:5621–5626. doi:10.1073/pnas.090504197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

We thank Prof. Suzanna Herculano-Houzel, Rio de Janeiro, for the helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Roth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Roth, G., Dicke, U. (2017). Evolution of Cognitive Brains: Mammals. In: Watanabe, S., Hofman, M., Shimizu, T. (eds) Evolution of the Brain, Cognition, and Emotion in Vertebrates. Brain Science. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56559-8_6

Download citation

Publish with us

Policies and ethics