Skip to main content

The Evolution of Mammalian Brains from Early Mammals to Present-Day Primates

  • Chapter
  • First Online:

Part of the book series: Brain Science ((BRASC))

Abstract

The changes in brains as they evolved from early mammals to modern humans involved a great expansion of overall brain size and especially neocortex. Early mammals were small, and their small brains had a proportionately small cap of neocortex divided into approximately 20 functionally distinct areas. Numbers of areas and the size of the cortical sheet increased with the first primates and contained 40–50 cortical areas. Overall the six million years of the evolution of modern humans from early bipedal apes, brains evolved from a great ape size of 400 cc to roughly 1400 cc, with neocortex having an estimated 200 cortical areas occupying 80% of the brain. This cortical mass of 16 billion neurons, together with a high level of hemispheric specialization, appears to be critically involved in mediating the impressive cognitive abilities of modern humans.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allman JM (1999) Evolving brains. H. W. Freeman, New York

    Google Scholar 

  • Andrews P (2015) An ape’s view of human evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ashwell K (2013) Neurobiology of monotremes. CSIRO, Collingwood

    Google Scholar 

  • Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Jacob FW, Lent R, Herculano-Houzel S (2009) Equal numbers of neuronal and non-neuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513:532–541

    Article  PubMed  Google Scholar 

  • Bailey D, von Bonin G, McCulloch WS (1950) The isocortex of the chimpanzee. University of Illinois Press, Urbana

    Google Scholar 

  • Baker J, Meade A, Pagel M, Venditti C (2015) Adaptive evolution toward larger size in mammals. Proc Natl Acad Sci U S A 112:5093–5098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldwin MK, Cooke DF, Krubitzer L (2017) Intracortical microstimulation maps of motor, somatosensory, and posterior parietal cortex in tree shrews (Tupaia belangeri) reveal complex movement representations. Cereb Cortex 27(2):1439–1456

    PubMed  Google Scholar 

  • Beck PD, Pospichal MW, Kaas JH (1996) Topography, architecture, and connections of somatosensory cortex in opossums: evidence for five somatosensory areas. J Comp Neurol 366:109–133

    Article  CAS  PubMed  Google Scholar 

  • Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee Ross DE, Beck RMD, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A (2007) The delayed rise of present-day mammals. Nature 446:507–512

    Article  CAS  PubMed  Google Scholar 

  • Bloch JI, Boyer DM (2002) Grasping primate origins. Science 298:1606–1610

    Article  CAS  PubMed  Google Scholar 

  • Bloch JI, Woodruff ED, Wood AR, Rincon AF, Harrington AR, Morgan GS, Foster DA, Montes C, Jarmillo CA, Jud NA, Jones DS, MacFadden BJ (2016) First North American fossil monkey and early miocene tropical biotic interchange. Nature 533:243–246

    Article  CAS  PubMed  Google Scholar 

  • Bond M, Tejedor MF, Campbell K Jr, Chornogubsky L, Novo N, Goin F (2015) Eocene primates of South America and the African origins of New World monkeys. Nature 520:538–541

    Article  PubMed  CAS  Google Scholar 

  • Brauer J, Anwander A, Friederici AD (2011) Neuroanatomical prerequisites for language functions in the maturing brain. Cereb Cortex 21:459–466

    Article  PubMed  Google Scholar 

  • Brodmann K (1909) Vergleichende lokalisationslehre der grosshirnrinde in ihren prinzipien dargestellt auf Grund des Zellenbaues. Barth, Leipzig

    Google Scholar 

  • Brown H, Kosslyn S (1993) Cerebral lateralization. Curr Opin Neurobiol 3:183–186

    Article  CAS  PubMed  Google Scholar 

  • Butler AB, Hodos W (2005) Comparative vertebrate neuroanatomy, 2nd edn. Wiley, Hoboken

    Book  Google Scholar 

  • Casagrande VA, Kaas JH (1994) The afferent, intrinsic, and efferent connections of primary visual cortex in primates. In: Peters A, Rockland K (eds) Cerebral cortex. Plenum Press, New York, pp 201–259

    Google Scholar 

  • Casagrande VA (1994) A third parallel visual pathway to primate area V1. Trends Neurosci 17:305–310

    Article  CAS  PubMed  Google Scholar 

  • Catania KC, Lyon DC, Mock OB, Kaas JH (1999) Cortical organization in shrews: evidence from five species. J Comp Neurol 410:55–72

    Article  CAS  PubMed  Google Scholar 

  • Changizi MA, Shimojo S (2005) Parcellation and area-area connectivity as a function of neocortex size. Brain Behav Evol 66:88–98

    Article  PubMed  Google Scholar 

  • Chaplin TA, Yu HH, Soares JG, Gattass R, Rosa MG (2013) A conserved pattern of differential expansion of cortical areas in simian primates. J Neurosci 33:15120–15125

    Article  CAS  PubMed  Google Scholar 

  • Coleman MN, Boyer DM (2012) Inner ear evolution in primates through the Cenozoic: implications for the evolution of hearing. Anat Rec 295:615–631

    Article  Google Scholar 

  • Collins CE, Stepniewska I, Kaas JH (2001) Topographic patterns of V2 cortical connections in a prosimian primate (Galago garnetti). J Comp Neurol 431:155–167

    Article  CAS  PubMed  Google Scholar 

  • Collins CE, Hendrickson A, Kaas JH (2005) Overview of the visual system of Tarsius. Anat Rec A Discov Mol Cell Evol Biol 287:1013–1025

    Article  PubMed  Google Scholar 

  • Collins CE, Turner EC, Sawyer EK, Reed JL, Young NA, Flaherty DK, Kaas JH (2016) Cortical cell and neuron density estimates in one chimpanzee hemisphere. Proc Natl Acad Sci U S A 113:740–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper HM, Herbin M, Nevo E (1993) Visual system of a naturally microphthalmic mammal: the blind mole rat, Spalax ehrenbergi. J Comp Neurol 328:313–350

    Article  CAS  PubMed  Google Scholar 

  • Coq J-O, Qi H-X, Collins CE, Kaas JH (2004) Anatomical and functional organization of somatosensory areas of the lateral fissure of the New World titi monkey (Callicebus moloch). J Comp Neurol 476:363–387

    Article  PubMed  Google Scholar 

  • Corballis MC (2007) The evolution of hemispheric specializations of the human brain. In: Kaas JH, Preuss TM (eds) Evolution of nervous systems, Primates, vol 4. Elsevier, London, pp 379–394

    Chapter  Google Scholar 

  • Covey E (2005) Neurobiological specializations in echolocating bats. Anat Rec A Discov Mol Cell Evol Biol 287:1103–1116

    Article  PubMed  Google Scholar 

  • Crompton RH, Vereecke EE, Thorpe SK (2008) Locomotion and posture from the common hominoid ancestor to fully modern hominins, with special reference to the last common panin/hominin ancestor. J Anat 212:501–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diamond IT, Hall WC (1969) Evolution of neocortex. Science 164:251–262

    Article  CAS  PubMed  Google Scholar 

  • Ebner FF, Kaas JH (2015) Somatosensory system. In: Paxinos G (ed) The rat nervous system, 4th edn. Elsevier, London, pp 673–699

    Google Scholar 

  • Felleman DJ, Nelson RJ, Sur M, Kaas JH (1983) Representations of the body surface in areas 3b and 1 of postcentral parietal cortex of Cebus monkeys. Brain Res 268:15–26

    Article  CAS  PubMed  Google Scholar 

  • Elston GN, Benavides-Piccione R, Elston A, Zietsch B, DeFelipe J, Manger P, Casagrande V, Kaas JH (2006) Specializations of the granular prefrontal cortex of primates: implications for cognitive processing. Anat Rec Part A 288A:26–35

    Article  Google Scholar 

  • Finlay BL, Darlington RB (1995) Linked regularities in the development and evolution of mammalian brains. Science 268:1578–1584

    Article  CAS  PubMed  Google Scholar 

  • Fleagle JG (1999) Primate adaptation and evolution, 2nd edn. Academic, San Diego

    Google Scholar 

  • Gabi M, Neves K, Masseron C, Ribeito P, Ventura-Antunes L, Torres L, Mota B, Kaas JH, Herculano-Houzel S (2016) No relative expansion of the number of prefrontal neurons in primate and human evolution. Proc Natl Acad Sci U S A 113(34):9617–9622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gannon PJ, Holloway RL, Broadfield DC, Braun AR (1998) Asymmetry of chimpanzee planum temporale: human-like pattern of Wernicke’s brain language area homolog. Science 279:220–222

    Article  CAS  PubMed  Google Scholar 

  • Gebo D (2004) A shrew-sized origin for primates. Yearb Phys Anthropol 47:40–62

    Article  Google Scholar 

  • Gilissen EP, Hopkins WD (2013) Asymmetries of the parietal operculum in chimpanzees (Pan troglodytes) in relation to handedness for tool use. Cereb Cortex 23:411–422

    Article  PubMed  Google Scholar 

  • Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25

    Article  CAS  PubMed  Google Scholar 

  • Grunbaum ASF, Sherrington CS (1901) Observations on the physiology of the cerebral cortex of some of the higher apes. Proc R Soc Lond 69:206–209

    Article  Google Scholar 

  • Hackett TA, Preuss TM, Kaas JH (2001) Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. J Comp Neurol 441:197–222

    Article  CAS  PubMed  Google Scholar 

  • Hall MI, Kamilar JM, Kirk EC (2012) Eye shape and the nocturnal bottleneck of mammals. Proc Biol Sci 279:4962–4968

    Article  PubMed  PubMed Central  Google Scholar 

  • Hecht EE, Gutman DA, Bradley BA, Preuss TM, Stout D (2015) Virtual dissection and comparative connectivity of the superior longitudinal fasciculus in chimpanzees and humans. NeuroImage 108:124–137

    Article  PubMed  Google Scholar 

  • Herculano-Houzel S, Collins CE, Wong P, Kaas JH (2007) Cellular scaling rules for primate brains. Proc Natl Acad Sci U S A 104:3562–3567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herculano-Houzel S (2012) Neuronal scaling rules for primate advantage. Prog Brain Res 195:325–340

    Article  PubMed  Google Scholar 

  • Herculano-Houzel S (2016) The human advantage. The MIT Press, Cambridge

    Book  Google Scholar 

  • Herculano-Houzel S, Kaas JH, de Oliveira-Souza R (2016) Corticalization of motor control in humans is a consequence of brain scaling in primate evolution. J Comp Neurol 524:448–455

    Article  PubMed  Google Scholar 

  • Hill J, Inder T, Neil J, Dierker D, Harwell J, Van Essen D (2010) Similar patterns of cortical expansion during human development and evolution. Proc Natl Acad Sci U S A 107:13135–13140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofman MA (1988) Size and shape of the cerebral cortex in mammals. Part II. The cortical volume. Brain Evol 32:17–26

    Article  CAS  Google Scholar 

  • Hofman MA (2014) Evolution of the human brain: when bigger is better. Front Neuroanat 8:15. doi:10.3389/fnana.2014.00015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hopkins WD, Cantalupo C (2004) Handedness in chimpanzees (Pan troglodytes) is associated with asymmetries of the primary motor cortex but not with homologous language areas. Behav Neurosci 118:1176–1183

    Article  PubMed  PubMed Central  Google Scholar 

  • Hopkins WD, Wesley MJ, Izard MK, Hook M, Schapiro SJ (2004) Chimpanzees (Pan troglodytes) are predominantly right-handed: replication in three populations of apes. Behav Neurosci 118:659–663

    Article  PubMed  PubMed Central  Google Scholar 

  • Hung CC, Yen CC, Ciuchta JL, Papoti D, Bock NA, Leopold DA, Silva AC (2015) Functional mapping of face-selective regions in the extrastriate visual cortex of the marmoset. J Neurosci 35:1160–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jablonski NG, Whitfort MJ, Roberts-Smith N, Qinqi X (2000) The influence of life history and diet on the distribution of catarrhine primates during the Pleistocene in eastern Asia. J Hum Evol 39:131–157

    Article  CAS  PubMed  Google Scholar 

  • Jacobs GH (2008) Primate color vision: a comparative perspective. Vis Neurosci 25:619–633

    Article  PubMed  Google Scholar 

  • Jerison HJ (1973) Evolution of the brain and intelligence. Academic, New York

    Google Scholar 

  • Jones EG (2007) The thalamus, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Kaas JH (2000) Why is brain size so important: design problems and solutions as neocortex gets bigger or smaller. Brain Mind 1:7–23

    Article  Google Scholar 

  • Kaas JH (2006) Evolution of the neocortex. Curr Biol 16:R910–R914

    Article  CAS  PubMed  Google Scholar 

  • Kaas JH (2008) The evolution of the complex sensory and motor systems of the human brain. Brain Res Bull 75:384–390

    Article  PubMed  Google Scholar 

  • Kaas JH (2011a) Neocortex in early mammals and its subsequent variations. Ann N Y Acad Sci 1225:28–36

    Article  PubMed  Google Scholar 

  • Kaas JH (2011b) Reconstructing the areal organization of the neocortex of the first mammals. Brain Behav Evol 78:7–21

    Article  PubMed  Google Scholar 

  • Kaas JH (2011c) The evolution of auditory cortex: the core areas. In: Winer JA, Schreiner CE (eds) The auditory cortex. Springer, New York, pp 407–427

    Chapter  Google Scholar 

  • Kaas JH (2012) Evolution of columns, modules, and domains in the neocortex of primates. Proc Natl Acad Sci U S A 109(Suppl 1):10655–10660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaas JH (2014) The evolution of the visual system in primates. In: Werner JS, Chalupa LM (eds) The new visual neuroscience. MIT Press, Cambridge, pp 1233–1246

    Google Scholar 

  • Kaas JH (2016) Approaches to the study of brain evolution. In: Shepherd SV (ed) Handbook of evolutionary neuroscience. Wiley, Chichester

    Google Scholar 

  • Kaas JH, Guillery RW, Allman JM (1972) Some principles of organization in the dorsal lateral geniculate nucleus. Brain Behav Evol 6:253–299

    Article  CAS  PubMed  Google Scholar 

  • Kaas JH, Hackett TA (2000) Subdivisions of auditory cortex and processing streams in primates. Proc Natl Acad Sci U S A 97:11793–11799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaas JH, Huerta MF, Weber JT, Harting JK (1978) Patterns of retinal terminations and laminar organization of the lateral geniculate nucleus of primates. J Comp Neurol 182:517–553

    Article  CAS  PubMed  Google Scholar 

  • Kaas J H and Lyon D C (2001) Visual Cortex Organization in Primates: Theories of V3 and adjoining Visual Areas. Progress in Brain Research 134:285–295

    Google Scholar 

  • Kaas JH, Lyon DC (2007) Pulvinar contributions to the dorsal and ventral streams of visual processing in primates. Brain Res Rev 55:285–296

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaas JH, Morel A (1993) Connections of visual areas of the upper temporal lobe of owl monkeys: the MT crescent and dorsal and ventral subdivisions of FST. J Neurosci 13:534–546

    CAS  PubMed  Google Scholar 

  • Kaas JH, Stepniewska I (2016) Evolution of posterior parietal cortex and parietal-frontal networks for specific actions in primates. J Comp Neurol 524:595–608

    Article  PubMed  Google Scholar 

  • Kay RF, Ross C, Williams BA (1997) Anthropoid origins. Science 275:797–804

    Article  CAS  PubMed  Google Scholar 

  • Kielan-Jaworowska Z, Citelli RL, Luo Z-X (2004) Mammals from the age of dinosaurs. NY, Columbia Univ. Press

    Google Scholar 

  • Krubitzer L, Manger P, Pettigrew J, Calford M (1995) Organization of somatosensory cortex in monotremes: in search of the prototypical plan. J Comp Neurol 351:261–306

    Article  CAS  PubMed  Google Scholar 

  • Ku SP, Tolias AS, Logothetis NK, Goense J (2011) fMRI of the face-processing network in the ventral temporal lobe of awake and anesthetized macaques. Neuron 70:352–362

    Article  CAS  PubMed  Google Scholar 

  • Lyon DC, Kaas JH (2002) Connectional evidence for dorsal and ventral V3, and other extrastriate areas in the prosimian primate, Galago garnetti. Brain Behav Evol 59:114–129

    Article  PubMed  Google Scholar 

  • Martin RD (1990) Primate origins and evolution. Princeton University Press, Princeton

    Google Scholar 

  • Muchlinski MN (2010) A comparative analysis of vibrissa count and infraorbital foramen area in primates and other mammals. J Hum Evol 58:447–473

    Article  PubMed  Google Scholar 

  • Murphy WJ, Perzner PA, O'Brien SJ (2004) Mammalian phylogenomics comes of age. Trends Genet 20:631–639

    Article  CAS  PubMed  Google Scholar 

  • Ni X, Gebo DL, Dagosto M, Meng J, Tafforeau P, Flynn JJ, Beard KC (2013) The oldest known primate skeleton and early haplorhine evolution. Nature 498:60–64

    Article  CAS  PubMed  Google Scholar 

  • Nilsson MA, Churakov G, Sommer M, Van Tran N, Zemann A, Brosius J, Schmitz J (2010) Tracking marsupial evolution using archaic genomic retroposon insertions. PLoS Biol 8(1–9):e1000436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Leary MA, Bloch JI, Flynn JJ, Gaudin TJ, Giallombardo A, Giannini NP, Goldberg SL, Kraatz BP, Luo ZX, Meng J, Ni X, Novacek MJ, Perini FA, Randall ZS, Rougier GW, Sargis EJ, Silcox MT, Simmons NB, Spaulding M, Velazco PM, Weksler M, Wible JR, Cirranello AL (2013) The placental mammal ancestor and the post-K-Pg radiation of placentals. Science 339:662–667

    Article  PubMed  CAS  Google Scholar 

  • Passingham R (2008) What is special about the human brain? Oxford University Press, Oxford

    Book  Google Scholar 

  • Pinker S (2009) How the mind works. W.W. Norton, New York

    Google Scholar 

  • Paxinos G, Petrides M, Rosa MG, Tokuno H (2012) The marmoset brain in stereotaxic coordinates. Elsevier, London

    Google Scholar 

  • Peeters R, Simone L, Nelissen K, Fabbri-Destro M, Vanduffel W, Rizzolatti G, Orban GA (2009) The representation of tool use in humans and monkeys: common and uniquely human features. J Neurosci 29:11523–11539

    Article  CAS  PubMed  Google Scholar 

  • Preuss TM, Goldman-Rakic PS (1991) Myelo- and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirrhine primate Galago and the anthropoid primate Macaca. J Comp Neurol 310:429–474

    Article  CAS  PubMed  Google Scholar 

  • Preuss TM, Qi H, Kaas JH (1999) Distinctive compartmental organization of human primary visual cortex. Proc Natl Acad Sci U S A 96:11601–11606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi HX, Preuss TM, Kaas JH (2008) Somatosensory areas of the cerebral cortex: architectonic characteristics and modular organization. In: Gardner EP, Kaas JH (eds) The senses: a comprehensive reference. Elsevier, London, pp 143–169

    Chapter  Google Scholar 

  • Radinsky L (1976) Cerebral clues. Nat Hist 85:54–59

    Google Scholar 

  • Regan BC, Julliot C, Simmen B, Vienot F, Charles-Dominique P, Mollon JD (2001) Fruits, foliage and the evolution of primate colour vision. Philos Trans R Soc Lond B Biol Sci 356:229–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remple MS, Henry EC, Catania KC (2003) The organization of somatosensory cortex in the laboratory rat (Rattus norvegicus): evidence for two lateral areas joined at the representation of the teeth. J Comp Neurol 467:105–118

    Article  PubMed  Google Scholar 

  • Remple MS, Reed JL, Stepniewska I, Kaas JH (2006) Organization of frontoparietal cortex in the tree shrew (Tupaia belangeri). I. Architecture, microelectrode maps, and corticospinal connections. J Comp Neurol 497:133–154

    Article  PubMed  Google Scholar 

  • Rilling JK, Glasser MF, Preuss TM, Ma XY, Zhao TJ, Hu XP, Behrens TEJ (2008) The evolution of the arcuate fasciculus revealed with comparative DTI. Nat Neurosci 11:426–428

    Article  CAS  PubMed  Google Scholar 

  • Ringo JL, Doty RW, Demeter S, Simard PY (1994) Time is of the essence: a conjecture that hemispheric specialization arose from inter-hemispheric conduction delay. Cereb Cortex 4:331–343

    Article  CAS  PubMed  Google Scholar 

  • Robson SL, Wood B (2008) Hominin life history: reconstruction and evolution. J Anat 212:394–425

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosa MG, Krubitzer LA (1999) The evolution of visual cortex: where is V2? Trends Neurosci 22:242–248

    Article  CAS  PubMed  Google Scholar 

  • Rosa MG, Palmer SM, Gamberini M, Tweedale R, Pinon MC, Bourne JA (2005) Resolving the organization of the new World monkey third visual complex: the dorsal extrastriate cortex of the marmoset (Callithrix jacchus). J Comp Neurol 483:164–191

    Article  PubMed  Google Scholar 

  • Rowe TB, Macrini TE, Luo ZX (2011) Fossil evidence on origin of the mammalian brain. Science 332:955–957

    Article  CAS  PubMed  Google Scholar 

  • Seiffert ER (2012) Early primate evolution in afro-Arabia. Evol Anthropol 21:239–253

    Article  PubMed  Google Scholar 

  • Seiffert ER, Perry JMG, Simons EL, Boyer DM (2010) Convergent evolution of anthropoid-like adaptations in eocene adapiform primates. Nature 461:1118–1121

    Article  CAS  Google Scholar 

  • Schmidt-Nielson K (1984) Why is animal size so important? Cambridge University Press, New York

    Book  Google Scholar 

  • Shepherd GM (2011) The microcircuit concept applied to cortical evolution from three-layer to six-layer cortex. Front Neuroanat 5:1–15

    Article  Google Scholar 

  • Silcox MT, Benham AE, Bloch JI (2010) Endocasts of microsyops (microsyopidae, primates) and the evolution of the brain in primitive primates. J Hum Evol 58:505–521

    Article  PubMed  Google Scholar 

  • Smith FA, Boyer AG, Brown JH, Costa DP, Dayan T, Ernest SK, Evans AR, Fortelius M, Gittleman JL, Hamilton MJ, Harding LE, Lintulaakso K, Lyons SK, McCain C, Okie JG, Saarinen JJ, Sibly RM, Stephens PR, Theodor J, Uhen MD (2010) The evolution of maximum body size of terrestrial mammals. Science 330:1216–1219

    Article  CAS  PubMed  Google Scholar 

  • Steiper ME, Seiffert ER (2012) Evidence for a convergent slowdown in primate molecular rates and its implications for the timing of early primate evolution. Proc Natl Acad Sci U S A 109:6006–6011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepniewska I, Fang PC, Kaas JH (2009) Organization of the posterior parietal cortex in galagos: I. Functional zones identified by microstimulation. J Comp Neurol 517:765–782

    Article  PubMed  PubMed Central  Google Scholar 

  • Stepniewska I, Cerkevich CM, Kaas JH (2016) Cortical connections of the caudal portion of posterior parietal cortex in prosimian galagos. Cereb Cortex 26:2753–2777

    Article  PubMed  Google Scholar 

  • Streidter GF (2005) Principles of brain evolution. Sinauer Associates, Sunderland

    Google Scholar 

  • Sur M, Nelson RJ, Kaas JH (1980) Representation of the body surface in somatic koniocortex in the prosimian Galago. J Comp Neurol 189:381–402

    Article  CAS  PubMed  Google Scholar 

  • Takahata N, Satta Y, Klein J (1995) Divergence time and population size in the lineage leading to modern humans. Theor Popul Biol 48:198–221

    Article  CAS  PubMed  Google Scholar 

  • Tigges J, Tigges M (1979) Ocular dominance columns in the striate cortex of chimpanzee (Pan troglodytes). Brain Res 166:386–390

    Article  CAS  PubMed  Google Scholar 

  • Tocheri MW, Orr CM, Jacofsky MC, Marzke MW (2008) The evolutionary history of the hominin hand since the last common ancestor of Pan and Homo. J Anat 212:544–562

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomasello M (2014) A natural history of human thinking. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Tsao DY, Moeller S, Freiwald WA (2008) Comparing face patch systems in macaques and humans. Proc Natl Acad Sci U S A 105:19514–19519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ungerleider LG, Haxby JV (1994) ‘What’ and ‘where’ in the human brain. Curr Opin Neurobiol 4:157–165

    Article  CAS  PubMed  Google Scholar 

  • Van Essen DC, Glasser MF, Dierker DL, Harwell J (2012a) Cortical parcellations of the macaque monkey analyzed on surface-based atlases. Cereb Cortex 22:2227–2240

    Article  PubMed  Google Scholar 

  • Van Essen DC, Glasser MF, Dierker DL, Harwell J, Coalson T (2012b) Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cereb Cortex 22:2241–2262

    Article  PubMed  Google Scholar 

  • Van Hooser SD (2007) Similarity and diversity in visual cortex: is there a unifying theory of cortical computation? Neuroscientist 13:639–656

    Article  PubMed  Google Scholar 

  • Weller RE, Kaas JH (1989) Parameters affecting the loss of ganglion cells of the retina following ablations of striate cortex in primates. Vis Neurosci 3:327–349

    Article  CAS  PubMed  Google Scholar 

  • Wong P, Collins CE, Kaas JH (2010) Overview of sensory systems of Tarsius. Int J Primatol 31:1002–1031

    Article  Google Scholar 

  • Woolsey CN, Tasker R, Welt C et al (1960) Organization of pre and postcentral leg areas in chimpanzee and gibbon. Trans Am Neurol Assoc 85:144–146

    Google Scholar 

  • Wrangham R (2009) Catching fire: how cooking made us human. Basic Books, New York

    Google Scholar 

  • Wu CW, Bichot NP, Kaas JH (2000) Converging evidence from microstimulation, architecture, and connections for multiple motor areas in the frontal and cingulate cortex of prosimian primates. J Comp Neurol 423:140–177

    Article  CAS  PubMed  Google Scholar 

  • Wu CW, Kaas JH (2003) Somatosensory cortex of prosimian galagos: physiological recording, cytoarchitecture, and corticocortical connections of anterior parietal cortex and cortex of the lateral sulcus. J Comp Neurol 457:263–292

    Article  PubMed  Google Scholar 

  • Young N, Stepniewska I, Kaas JH (2012) Motor cortex. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Elsevier, London, pp 527–536

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon H. Kaas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Kaas, J.H. (2017). The Evolution of Mammalian Brains from Early Mammals to Present-Day Primates. In: Watanabe, S., Hofman, M., Shimizu, T. (eds) Evolution of the Brain, Cognition, and Emotion in Vertebrates. Brain Science. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56559-8_3

Download citation

Publish with us

Policies and ethics