Skip to main content

The Origins of the Bird Brain: Multiple Pulses of Cerebral Expansion in Evolution

  • Chapter
  • First Online:
Evolution of the Brain, Cognition, and Emotion in Vertebrates

Part of the book series: Brain Science ((BRASC))

Abstract

Birds demonstrate extraordinary cognitive and emotional capabilities. The majority of these performances are most likely supported by their developed cerebrum. Birds, as well as mammals, have a much larger cerebrum compared to reptiles, given a similar body size. Since the common ancestral reptiles of birds and mammals had a relatively small brain according to paleobiological evidence, birds and mammals must have evolved to expand their brains independently after they diverged into different lineages. In the lineage leading to modern birds, brain expansion occurred multiple times, possibly in response to different selective pressures. This chapter includes focused discussions on three major pulses regarding brain evolution of the bird lineage. In each discussion, possible important selection factors to trigger the brain expansion are proposed. First, a discussion is on the emergence of amniotes (the common ancestor of reptiles, birds, and mammals) in the Paleozoic Era. Adaptation to terrestrial habitats and increased parental investment might play essential roles in brain expansion. Second, a discussion focuses on how theropod dinosaurs in the bird stem lineage evolved their brains in the Mesozoic Era. In the bird stem lineage, predatory behavior and body miniaturization were probably associated with the development of the brain. Finally, we discuss the evolutionary process of cerebrum expansion in modern birds during the Cenozoic Era. Acquisition of powered flight and endothermic metabolism are proposed as the main contributing factors of cerebral expansion in modern birds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerman J (2016) The genius of birds. Penguin Press, New York

    Google Scholar 

  • Alonso PD, Milner AC, Ketcham RA, Cookson MJ, Rowe TB (2004) The avian nature of the brain and inner ear of Archaeopteryx. Nature 430(7000):666–669

    Article  CAS  PubMed  Google Scholar 

  • Balanoff AM, Bever GS, Rowe TB, Norell MA (2013) Evolutionary origins of the avian brain. Nature 501(7465):93–96

    Article  CAS  PubMed  Google Scholar 

  • Bennett AF, Ruben JA (1979) Endothermy and activity in vertebrates. Science 206(4419):649–654

    Article  CAS  PubMed  Google Scholar 

  • Benton MJ (2014) How birds became birds. Science 345(6196):508–509

    Article  CAS  PubMed  Google Scholar 

  • Butler AB, Hodos W (1996) Comparative vertebrate neuroanatomy: evolution and adaptation. Wiley, Hoboken

    Google Scholar 

  • Callaway E (2014) Rival species recast significance of ‘first bird’. Nature 516(7529):18–19

    Article  CAS  PubMed  Google Scholar 

  • Carroll RL (1988) Vertebrate palaeontology and evolution. W. H. Freeman, New York

    Google Scholar 

  • Clarke A, Portner HO (2010) Temperature, metabolic power and the evolution of endothermy. Biol Rev Camb Philos Soc 85(4):703–727

    PubMed  Google Scholar 

  • Clarke JA (2004) Phylogenetic taxonomy, and systematics of Ichthyornis and Apatornis (Avialae: Ornithurae). Bull Am Mus Nat Hist 286:1–179

    Article  Google Scholar 

  • Clarke JA, Tambussi CP, Noriega JI, Erickson GM, Ketcham RA (2005) Definitive fossil evidence for the extant avian radiation in the Cretaceous. Nature 433(7023):305–308

    Article  CAS  PubMed  Google Scholar 

  • Cross DJ, Marzluff JM, Palmquist I, Minoshima S, Shimizu T, Miyaoka R (2013) Distinct neural circuits underlie assessment of a diversity of natural dangers by American crows. Proc Biol Sci 280(1765):20131046

    Article  PubMed  PubMed Central  Google Scholar 

  • Emery NJ, Clayton NS (2004) The mentality of crows: convergent evolution of intelligence in corvids and apes. Science 306(5703):1903–1907

    Article  CAS  PubMed  Google Scholar 

  • Emery NJ, Clayton NS (2005) Evolution of the avian brain and intelligence. Curr Biol 15(23):R946–R950

    Article  CAS  PubMed  Google Scholar 

  • Ericson PGP, Anderson CL, Britton T, Elzanowski A, Johansson US, Källersjö M, Ohlson JI, Parsons TJ, Zuccon D, Mayr G (2006) Diversification of Neoaves: integration of molecular sequence data and fossils. Biol Lett 2(4):543–547

    Article  PubMed  PubMed Central  Google Scholar 

  • Feduccia A (1995) Explosive evolution in tertiary birds and mammals. Science 267(5198):637–638

    Article  CAS  PubMed  Google Scholar 

  • Fraser ON, Bugnyar T (2010) Do ravens show consolation? Responses to distressed others. PLoS One 5(5):e10605

    Article  PubMed  PubMed Central  Google Scholar 

  • Fraser ON, Bugnyar T (2012) Reciprocity of agonistic support in ravens. Anim Behav 83(1):171–177

    Article  PubMed  PubMed Central  Google Scholar 

  • Gauthier J, de Queiroz K (2001) Feathered dinosaurs, flying dinosaurs, crown dinosaurs, and the name “Aves”. In: Gauthier JA, Gall LF (eds) New perspectives on the origin and early evolution of birds: proceedings of the international symposium in honor of John H. Ostrom. Peabody Museum of Natural History, Yale University, New Haven, pp 7–41

    Google Scholar 

  • Gill F, Donsker D (2016) IOC World Bird List (v 6.2). doi:10.14344/IOC.ML.6.2

  • Glut DF (1997) Dinosaurs, the encyclopedia. McFarland, Jefferson

    Google Scholar 

  • Godefroit P, Cau A, Dong-Yu H, Escuillie F, Wenhao W, Dyke G (2013) A Jurassic avialan dinosaur from China resolves the early phylogenetic history of birds. Nature 498(7454):359–362

    Article  CAS  PubMed  Google Scholar 

  • Güntürkün O, Bugnyar T (2016) Cognition without cortex. Trends Cogn Sci 20(4):291–303

    Article  PubMed  Google Scholar 

  • Haddrath O, Baker AJ (2012) Multiple nuclear genes and retroposons support vicariance and dispersal of the palaeognaths, and an Early Cretaceous origin of modern birds. Proc R Soc Lond B Biol Sci 279(1747):4617–4625

    Article  Google Scholar 

  • Heinrich B (2009) Mind of the raven. HarperCollins, New York

    Google Scholar 

  • Hillenius WJ, Ruben JA (2004) The evolution of endothermy in terrestrial vertebrates: Who? When? Why? Physiol Biochem Zool 77(6):1019–1042

    Article  PubMed  Google Scholar 

  • Hopson J, Gans C (1979) Paleoneurology. In: Gans C, Northcutt RG, Ulinski P (eds) Biology of the reptilia, vol 9. Academic, New York, pp 39–146

    Google Scholar 

  • Hopson JA (1977) Relative brain size and behavior in archosaurian reptiles. Ann Rev Ecol Syst 8:429–448

    Article  Google Scholar 

  • Hutchinson JR, Bates KT, Molnar J, Allen V, Makovicky PJ (2011) A computational analysis of limb and body dimensions in Tyrannosaurus rex with implications for locomotion, ontogeny, and growth. PLoS One 6(10):e26037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huxley TH (1868) On the animals which are most nearly intermediate between birds and reptiles. Ann Mag Nat Hist 4(2):66–75

    Google Scholar 

  • Jarvis ED, Gunturkun O, Bruce L, Csillag A, Karten H, Kuenzel W, Medina L, Paxinos G, Perkel DJ, Shimizu T, Striedter G, Wild JM, Ball GF, Dugas-Ford J, Durand SE, Hough GE, Husband S, Kubikova L, Lee DW, Mello CV, Powers A, Siang C, Smulders TV, Wada K, White SA, Yamamoto K, Yu J, Reiner A, Butler AB (2005) Avian brains and a new understanding of vertebrate brain evolution. Nat Rev Neurosci 6(2):151–159

    Article  CAS  PubMed  Google Scholar 

  • Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, Ho SYW, Faircloth BC, Nabholz B, Howard JT, Suh A, Weber CC, da Fonseca RR, Li J, Zhang F, Li H, Zhou L, Narula N, Liu L, Ganapathy G, Boussau B, Bayzid MS, Zavidovych V, Subramanian S, Gabaldón T, Capella-Gutiérrez S, Huerta-Cepas J, Rekepalli B, Munch K, Schierup M, Lindow B, Warren WC, Ray D, Green RE, Bruford MW, Zhan X, Dixon A, Li S, Li N, Huang Y, Derryberry EP, Bertelsen MF, Sheldon FH, Brumfield RT, Mello CV, Lovell PV, Wirthlin M, Schneider MPC, Prosdocimi F, Samaniego JA, Velazquez AMV, Alfaro-Núñez A, Campos PF, Petersen B, Sicheritz-Ponten T, Pas A, Bailey T, Scofield P, Bunce M, Lambert DM, Zhou Q, Perelman P, Driskell AC, Shapiro B, Xiong Z, Zeng Y, Liu S, Li Z, Liu B, Wu K, Xiao J, Yinqi X, Zheng Q, Zhang Y, Yang H, Wang J, Smeds L, Rheindt FE, Braun M, Fjeldsa J, Orlando L, Barker FK, Jønsson KA, Johnson W, Koepfli K-P, O’Brien S, Haussler D, Ryder OA, Rahbek C, Willerslev E, Graves GR, Glenn TC, McCormack J, Burt D, Ellegren H, Alström P, Edwards SV, Stamatakis A, Mindell DP, Cracraft J, Braun EL, Warnow T, Jun W, Gilbert MTP, Zhang G (2014) Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346(6215):1320–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jerison HJ (1969) Brain evolution and dinosaur brains. Am Nat 103(934):575–588

    Article  Google Scholar 

  • Jerison HJ (1973) Evolution of the brain and intelligence. Academic, New York

    Google Scholar 

  • Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO (2012) The global diversity of birds in space and time. Nature 491(7424):444–448

    Article  CAS  PubMed  Google Scholar 

  • Kurochkin EN, Dyke GJ, Saveliev SV, Pervushov EM, Popov EV (2007) A fossil brain from the Cretaceous of European Russia and avian sensory evolution. Biol Lett 3(3):309–313

    Article  PubMed  PubMed Central  Google Scholar 

  • Larsson HC, Sereno PC, Wilson JA (2000) Forebrain enlargement among nonavian theropod dinosaurs. J Vert Paleontol 20(3):615–618

    Article  Google Scholar 

  • Lee MSY, Cau A, Naish D, Dyke GJ (2014a) Morphological clocks in palaeontology, and a mid-Cretaceous origin of crown Aves. Syst Biol. doi:10.1093/sysbio/syt110

  • Lee MSY, Cau A, Naish D, Dyke GJ (2014b) Sustained miniaturization and anatomical innovation in the dinosaurian ancestors of birds. Science 345(6196):562–566

    Article  CAS  PubMed  Google Scholar 

  • Livezey BC, Zusi RL (2007) Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II Analysis and discussion. Zool J Linn Soc 149(1):1–95

    Article  PubMed  PubMed Central  Google Scholar 

  • Lovegrove BG (2016) A phenology of the evolution of endothermy in birds and mammals. Biol Rev 92(2):1213–1240. doi:10.1111/brv.12280

    Article  PubMed  Google Scholar 

  • Luo Z-X, Yuan C-X, Meng Q-J, Ji Q (2011) A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature 476(7361):442–445

    Article  CAS  PubMed  Google Scholar 

  • Martin LD, Zhou Z (1997) Archaeopteryx-like skull in Enantiornithine bird. Nature 389(6651):556–556

    Article  CAS  Google Scholar 

  • Marzluff J, Angell T (2013) Gifts of the crow: how perception, emotion, and thought allow smart birds to behave like humans. Simon & Schuster, New York

    Google Scholar 

  • Navarrete AF, Reader SM, Street SE, Whalen A, Laland KN (2016) The coevolution of innovation and technical intelligence in primates. Philos Trans R Soc Lond B Biol Sci 371(1690):20150186

    Article  PubMed  PubMed Central  Google Scholar 

  • Northcutt RG (1981) Evolution of the telencephalon in nonmammals. Annu Rev Neurosci 4:301–350

    Article  CAS  PubMed  Google Scholar 

  • O’Leary MA, Bloch JI, Flynn JJ, Gaudin TJ, Giallombardo A, Giannini NP, Goldberg SL, Kraatz BP, Luo Z-X, Meng J, Ni X, Novacek MJ, Perini FA, Randall ZS, Rougier GW, Sargis EJ, Silcox MT, Simmons NB, Spaulding M, Velazco PM, Weksler M, Wible JR, Cirranello AL (2013) The placental mammal ancestor and the post–K-Pg radiation of placentals. Science 339(6120):662–667

    Article  PubMed  Google Scholar 

  • Olkowicz S, Kocourek M, Lučan RK, Porteš M, Fitch WT, Herculano-Houzel S, Němec P (2016) Birds have primate-like numbers of neurons in the forebrain. Proc Natl Acad Sci U S A 113(26):7255–7260. doi:10.1073/pnas.1517131113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostrom JH (1973) The ancestry of birds. Nature 242(5393):136–136

    Article  Google Scholar 

  • Reiner A, Medina L, Veenman CL (1998) Structural and functional evolution of the basal ganglia in vertebrates. Brain Res Brain Res Rev 28(3):235–285

    Article  CAS  PubMed  Google Scholar 

  • Reiner A, Perkel DJ, Bruce LL, Butler AB, Csillag A, Kuenzel W, Medina L, Paxinos G, Shimizu T, Striedter G, Wild M, Ball GF, Durand S, Gunturkun O, Lee DW, Mello CV, Powers A, White SA, Hough G, Kubikova L, Smulders TV, Wada K, Dugas-Ford J, Husband S, Yamamoto K, Yu J, Siang C, Jarvis ED (2004) Revised nomenclature for avian telencephalon and some related brainstem nuclei. J Comp Neurol 473(3):377–414

    Article  PubMed  PubMed Central  Google Scholar 

  • Roots C (2006) Flightless birds. Greenwood Press, Santa Barbara

    Google Scholar 

  • Rowe TB, Macrini TE, Luo Z-X (2011) Fossil evidence on origin of the mammalian brain. Science 332(6032):955–957

    Article  CAS  PubMed  Google Scholar 

  • Sereno PC, Dutheil DB, Iarochene M, Larsson HCE, Lyon GH, Magwene PM, Sidor CA, Varricchio DJ, Wilson JA (1996) Predatory dinosaurs from the Sahara and Late Cretaceous faunal differentiation. Science 272(5264):986–991

    Article  CAS  PubMed  Google Scholar 

  • Shanahan M, Bingman VP, Shimizu T, Wild M, Güntürkün O (2013) Large-scale network organization in the avian forebrain: a connectivity matrix and theoretical analysis. Front Comput Neurosci 7:89

    Article  PubMed  PubMed Central  Google Scholar 

  • Shettleworth SJ (2012) Fundamentals of comparative cognition. Oxford University Press, Oxford

    Google Scholar 

  • Shimizu T (2001) Evolution of the forebrain in tetrapods. In: Roth G, Wullimann MF (eds) Brain evolution and cognition. Wiley, New York, pp 135–184

    Google Scholar 

  • Shimizu T, Watanabe S (2012) The avian visual system: overview. In: Lazareva OF, Shimizu T, Wasserman EA (eds) How animals see the world: comparative behavior, biology, and evolution of vision. Oxford University Press, New York, pp 473–482

    Chapter  Google Scholar 

  • Trivers R (1972) Parental investment and sexual selection. In: Campbell BG (ed) Sexual selection and the descent of man 1871–1971. Aldine, Chicago, pp 136–179

    Google Scholar 

  • Tucker VA (1998) Gliding flight: speed and acceleration of ideal falcons during diving and pull out. J Exp Biol 201(3):403–414

    CAS  PubMed  Google Scholar 

  • Tucker VA, Cade TJ, Tucker AE (1998) Diving speeds and angles of a gyrfalcon (Falco rusticolus). J Exp Biol 201(13):2061–2070

    PubMed  Google Scholar 

  • Turner AH, Makovicky PJ, Norell M (2012) A review of dromaeosaurid systematics and paravian phylogeny. Bull Am Mus Nat Hist 371:1–206

    Article  Google Scholar 

  • Wasserman EA, Zentall TR (2006) Comparative cognition: experimental explorations of animal intelligence. Oxford University Press, Oxford

    Google Scholar 

  • Witmer LM, Chatterjee S, Franzosa J, Rowe T (2003) Neuroanatomy of flying reptiles and implications for flight, posture and behaviour. Nature 425(6961):950–953

    Article  CAS  PubMed  Google Scholar 

  • Witton MP (2013) Pterosaurs: natural history, evolution, anatomy. Princeton University Press, Princeton

    Book  Google Scholar 

  • Xu X, Guo Y (2009) The origin and early evolution of feathers: insights from recent paleontological and neontological data. Vertebrat Palasiatic 47(4):311–329

    Google Scholar 

  • Xu X, Wang K, Zhang K, Ma Q, Xing L, Sullivan C, Hu D, Cheng S, Wang S (2012) A gigantic feathered dinosaur from the lower Cretaceous of China. Nature 484(7392):92–95

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Zhou Z, Wang X, Kuang X, Zhang F, Du X (2003) Four-winged dinosaurs from China. Nature 421(6921):335–340

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, O’Connor J, Wang X, Wang M, Zhang X, Zhou Z (2014) On the absence of sternal elements in Anchiornis (Paraves) and Sapeornis (Aves) and the complex early evolution of the avian sternum. Proc Natl Acad Sci U S A 111(38):13900–13905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Tadd B. Patton, Michel A. Hofman, Douglas G. Barron, and Lynn B. Martin for critically reading the manuscript and providing helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Shimizu Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Shimizu, T., Shinozuka, K., Uysal, A.K., Leilani Kellogg, S. (2017). The Origins of the Bird Brain: Multiple Pulses of Cerebral Expansion in Evolution. In: Watanabe, S., Hofman, M., Shimizu, T. (eds) Evolution of the Brain, Cognition, and Emotion in Vertebrates. Brain Science. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56559-8_2

Download citation

Publish with us

Policies and ethics