Skip to main content

Evolution of the Emotional Brain

  • Chapter
  • First Online:
Evolution of the Brain, Cognition, and Emotion in Vertebrates

Part of the book series: Brain Science ((BRASC))

Abstract

The brain systems and processing involved in emotion in vertebrates have evolved considerably. The way in which the primate orbitofrontal cortex has undergone great evolutionary development in primates and comes to overshadow the much evolutionarily older amygdala for many functions related to emotion is described. Indeed there may be no cortical area in rodents that is homologous to most of the primate including human orbitofrontal cortex. The primate including human orbitofrontal cortex (OFC) implements reward value. Value is not represented at earlier stages of processing in primates including humans. Invariant visual object recognition is used for many functions including memory formation, so perception is kept separate from emotion. In contrast, in rodents, value is represented even in the first taste relay in the brain, the nucleus of the solitary tract: there is no clear separation between perception and emotion. In rodents, even the taste pathways are connected differently, with subcortical connections bypassing the cortex (including orbitofrontal cortex) and making connections via a pontine taste area directly to the hypothalamus and amygdala. Goal value-directed choice is usual in primates and humans, whereas fixed action patterns, such as pecking in birds, are more common elsewhere. In humans, and perhaps some primates, syntactic reasoning and thereby planning allows selfish gene-specified (emotion-related) rewards to be rejected in favour of the long-term interests of the individual, the phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baylis LL, Rolls ET (1991) Responses of neurons in the primate taste cortex to glutamate. Physiol Behav 49:973–979

    Article  CAS  PubMed  Google Scholar 

  • Brown PL, Jenkins HM (1968) Autoshaping of the pigeon’s key-peck. J Exp Anal Behav 11:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardinal N, Parkinson JA, Hall J, Everitt BJ (2002) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 26:321–352

    Article  PubMed  Google Scholar 

  • Cho YK, Li CS, Smith DV (2002) Gustatory projections from the nucleus of the solitary tract to the parabrachial nuclei in the hamster. Chem Senses 27(1):81–90

    Article  PubMed  Google Scholar 

  • Critchley HD, Harrison NA (2013) Visceral influences on brain and behavior. Neuron 77:624–638. doi:10.1016/j.neuron.2013.02.008

    Article  CAS  PubMed  Google Scholar 

  • Critchley HD, Rolls ET (1996a) Hunger and satiety modify the responses of olfactory and visual neurons in the primate orbitofrontal cortex. J Neurophysiol 75:1673–1686

    CAS  PubMed  Google Scholar 

  • Critchley HD, Rolls ET (1996b) Olfactory neuronal responses in the primate orbitofrontal cortex: analysis in an olfactory discrimination task. J Neurophysiol 75:1659–1672

    CAS  PubMed  Google Scholar 

  • de Araujo IE, Gutierrez R, Oliveira-Maia AJ, Pereira A Jr, Nicolelis MA, Simon SA (2006) Neural ensemble coding of satiety states. Neuron 51:483–494. doi:10.1016/j.neuron.2006.07.009

    Article  PubMed  CAS  Google Scholar 

  • Deco G, Rolls ET (2005) Synaptic and spiking dynamics underlying reward reversal in orbitofrontal cortex. Cereb Cortex 15:15–30

    Article  PubMed  Google Scholar 

  • Feinstein JS, Adolphs R, Damasio A, Tranel D (2011) The human amygdala and the induction and experience of fear. Curr Biol 21(1):34–38. doi:10.1016/j.cub.2010.11.042. S0960-9822(10)01508-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Francis S, Rolls ET, Bowtell R, McGlone F, O’Doherty J, Browning A, Clare S, Smith E (1999) The representation of pleasant touch in the brain and its relationship with taste and olfactory areas. Neuroreport 10:453–459

    Article  CAS  PubMed  Google Scholar 

  • Giza BK, Scott TR (1983) Blood glucose selectively affects taste-evoked activity in rat nucleus tractus solitarius. Physiol Behav 31:643–650

    CAS  PubMed  Google Scholar 

  • Giza BK, Scott TR (1987) Intravenous insulin infusions in rats decrease gustatory-evoked responses to sugars. Am J Phys 252:R994–1002

    CAS  Google Scholar 

  • Giza BK, Deems RO, Vanderweele DA, Scott TR (1993) Pancreatic glucagon suppresses gustatory responsiveness to glucose. Am J Phys 265:R1231–R1237

    CAS  Google Scholar 

  • Glenn JF, Erickson RP (1976) Gastric modulation of gustatory afferent activity. Physiol Behav 16:561–568

    Article  Google Scholar 

  • Grabenhorst F, Rolls ET (2008) Selective attention to affective value alters how the brain processes taste stimuli. Eur J Neurosci 27:723–729

    Article  PubMed  Google Scholar 

  • Grabenhorst F, Rolls ET (2011) Value, pleasure, and choice in the ventral prefrontal cortex. Trends Cogn Sci 15:56–67

    Article  PubMed  Google Scholar 

  • Grabenhorst F, Rolls ET, Bilderbeck A (2008) How cognition modulates affective responses to taste and flavor: top down influences on the orbitofrontal and pregenual cingulate cortices. Cereb Cortex 18:1549–1559

    Article  PubMed  Google Scholar 

  • Grabenhorst F, Rolls ET, Margot C (2011) A hedonically complex odor mixture captures the brain’s attention. NeuroImage 55:832–843

    Article  PubMed  Google Scholar 

  • Hajnal A, Takenouchi K, Norgren R (1999) Effect of intraduodenal lipid on parabrachial gustatory coding in awake rats. J Neurosci 19:7182–7190

    CAS  PubMed  Google Scholar 

  • Hasselmo ME, Rolls ET, Baylis GC (1989) The role of expression and identity in the face-selective responses of neurons in the temporal visual cortex of the monkey. Behav Brain Res 32:203–218

    Article  CAS  PubMed  Google Scholar 

  • Hornak J, Rolls ET, Wade D (1996) Face and voice expression identification in patients with emotional and behavioural changes following ventral frontal lobe damage. Neuropsychologia 34:247–261

    Article  CAS  PubMed  Google Scholar 

  • Hornak J, Bramham J, Rolls ET, Morris RG, O’Doherty J, Bullock PR, Polkey CE (2003) Changes in emotion after circumscribed surgical lesions of the orbitofrontal and cingulate cortices. Brain 126:1691–1712

    Article  CAS  PubMed  Google Scholar 

  • Hornak J, O’Doherty J, Bramham J, Rolls ET, Morris RG, Bullock PR, Polkey CE (2004) Reward-related reversal learning after surgical excisions in orbitofrontal and dorsolateral prefrontal cortex in humans. J Cogn Neurosci 16:463–478

    Article  CAS  PubMed  Google Scholar 

  • Kadohisa M, Rolls ET, Verhagen JV (2005a) Neuronal representations of stimuli in the mouth: the primate insular taste cortex, orbitofrontal cortex, and amygdala. Chem Senses 30(5):401–419. doi:10.1093/chemse/bji036

    Article  PubMed  Google Scholar 

  • Kadohisa M, Rolls ET, Verhagen JV (2005b) The primate amygdala: neuronal representations of the viscosity, fat texture, temperature, grittiness and taste of foods. Neuroscience 132(1):33–48. doi:10.1016/j.neuroscience.2004.12.005

    Article  CAS  PubMed  Google Scholar 

  • Kringelbach ML, Rolls ET (2003) Neural correlates of rapid reversal learning in a simple model of human social interaction. NeuroImage 20:1371–1383

    Article  PubMed  Google Scholar 

  • Kringelbach ML, O’Doherty J, Rolls ET, Andrews C (2003) Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cereb Cortex 13:1064–1071

    Article  CAS  PubMed  Google Scholar 

  • LeDoux J (2012) Rethinking the emotional brain. Neuron 73(4):653–676. doi:10.1016/j.neuron.2012.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacDonald CJ, Meck WH, Simon SA (2012) Distinct neural ensembles in the rat gustatory cortex encode salt and water tastes. J Physiol 590:3169–3184. doi:10.1113/jphysiol.2012.233486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris JS, Dolan RJ (2001) Involvement of human amygdala and orbitofrontal cortex in hunger-enhanced memory for food stimuli. J Neurosci 21:5304–5310

    CAS  PubMed  Google Scholar 

  • Morrison SE, Saez A, Lau B, Salzman CD (2011) Different time courses for learning-related changes in amygdala and orbitofrontal cortex. Neuron 71(6):1127–1140. doi:10.1016/j.neuron.2011.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray EA, Izquierdo A (2007) Orbitofrontal cortex and amygdala contributions to affect and action in primates. Ann N Y Acad Sci 1121:273–296

    Article  PubMed  Google Scholar 

  • Norgren R (1974) Gustatory afferents to ventral forebrain. Brain Res 81(2):285–295. doi:0006-8993(74)90942-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Norgren R (1976) Taste pathways to hypothalamus and amygdala. J Comp Neurol 166:17–30

    Article  CAS  PubMed  Google Scholar 

  • Norgren R (1984) Central neural mechanisms of taste. In: Darien-Smith I (ed) Handbook of physiology - the Nervous system III. Sensory processes, vol 1. American Physiological Society, Washington, pp 1087–1128

    Google Scholar 

  • Norgren R (1990) Gustatory system. In: Paxinos G (ed) The human nervous system. Academic, San Diego, pp 845–861

    Chapter  Google Scholar 

  • Norgren R, Leonard CM (1971) Taste pathways in rat brainstem. Science 173(4002):1136–1139

    Article  CAS  PubMed  Google Scholar 

  • O’Doherty J, Rolls ET, Francis S, Bowtell R, McGlone F, Kobal G, Renner B, Ahne G (2000) Sensory-specific satiety related olfactory activation of the human orbitofrontal cortex. Neuroreport 11:893–897

    Article  PubMed  Google Scholar 

  • O’Doherty JP, Deichmann R, Critchley HD, Dolan RJ (2002) Neural responses during anticipation of a primary taste reward. Neuron 33:815–826

    Article  PubMed  Google Scholar 

  • Padoa-Schioppa C (2011) Neurobiology of economic choice: a good-based model. Annu Rev Neurosci 34:333–359. doi:10.1146/annurev-neuro-061010-113648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padoa-Schioppa C, Assad JA (2006) Neurons in the orbitofrontal cortex encode economic value. Nature 441(7090):223–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padoa-Schioppa C, Assad JA (2008) The representation of economic value in the orbitofrontal cortex is invariant for changes of menu. Nat Neurosci 11(1):95–102

    Article  CAS  PubMed  Google Scholar 

  • Passingham REP, Wise SP (2012) The neurobiology of the prefrontal Cortex. Oxford University Press, Oxford

    Book  Google Scholar 

  • Phelps EA, LeDoux JE (2005) Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48(2):175–187. doi:10.1016/j.neuron.2005.09.025. S0896-6273(05)00823-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Plassmann H, O’Doherty J, Rangel A (2007) Orbitofrontal cortex encodes willingness to pay in everyday economic transactions. J Neurosci 27(37):9984–9988. doi:10.1523/JNEUROSCI.2131-07.2007

    Article  CAS  PubMed  Google Scholar 

  • Preuss TM (1995) Do rats have prefrontal cortex? The rose-woolsey-akert program reconsidered. J Cogn Neurosci 7:1–24

    Article  CAS  PubMed  Google Scholar 

  • Pritchard TC, Nedderman EN, Edwards EM, Petticoffer AC, Schwartz GJ, Scott TR (2008) Satiety-responsive neurons in the medial orbitofrontal cortex of the macaque. Behav Neurosci 122:174–182. doi:10.1037/0735-7044.122.1.174. 2008-01943-018 [pii]

    Article  PubMed  Google Scholar 

  • Rolls ET (1984) Neurons in the cortex of the temporal lobe and in the amygdala of the monkey with responses selective for faces. Hum Neurobiol 3:209–222

    CAS  PubMed  Google Scholar 

  • Rolls ET (1992) Neurophysiological mechanisms underlying face processing within and beyond the temporal cortical visual areas. Philos Trans R Soc Lond B 335:11–21

    Article  CAS  Google Scholar 

  • Rolls ET (1996) The orbitofrontal cortex. Philos Trans R Soc Lond B 351:1433–1444

    Article  CAS  Google Scholar 

  • Rolls ET (2000) Functions of the primate temporal lobe cortical visual areas in invariant visual object and face recognition. Neuron 27:205–218

    Article  CAS  PubMed  Google Scholar 

  • Rolls ET (2007) The representation of information about faces in the temporal and frontal lobes. Neuropsychologia 45:125–143

    Article  Google Scholar 

  • Rolls ET (2008a) Face processing in different brain areas, and critical band masking. J Neuropsychol 2:325–360

    Article  PubMed  Google Scholar 

  • Rolls ET (2008b) Memory, attention, and decision-making: a unifying computational neuroscience approach. Oxford University Press, Oxford

    Google Scholar 

  • Rolls ET (2009) The neurophysiology and computational mechanisms of object representation. In: Dickinson S, Tarr M, Leonardis A, Schiele B (eds) Object categorization: computer and human vision perspectives. Cambridge University Press, Cambridge, pp 257–287

    Chapter  Google Scholar 

  • Rolls ET (2011) Face neurons. In: Calder AJ, Rhodes G, Johnson MH, Haxby JV (eds) The Oxford handbook of face perception. Oxford University Press, Oxford, pp 51–75

    Google Scholar 

  • Rolls ET (2012a) Invariant visual object and face recognition: neural and computational bases, and a model, VisNet. Front Comput Neurosci 6(35):1–70. doi:10.3389/fncom.2012.00035

    Google Scholar 

  • Rolls ET (2012b) Neuroculture. On the implications of Brain science. Oxford University Press, Oxford

    Google Scholar 

  • Rolls ET (2013) What are emotional states, and why do we have them? Emot Rev 5:241–247

    Article  Google Scholar 

  • Rolls ET (2014) Emotion and decision-making explained. Oxford University Press, Oxford

    Google Scholar 

  • Rolls ET (2015a) Functions of the anterior insula in taste, autonomic, and related functions. Brain Cogn 110:4–19. doi:10.1016/j.bandc.2015.1007.1002

    Article  PubMed  Google Scholar 

  • Rolls ET (2015b) Limbic systems for emotion and for memory, but no single limbic system. Cortex 62:119–157

    Article  PubMed  Google Scholar 

  • Rolls ET (2015c) Taste, olfactory, and food reward value processing in the brain. Prog Neurobiol 127–128:64–90. doi:10.1016/j.pneurobio.2015.03.002

    Article  PubMed  Google Scholar 

  • Rolls ET (2016a) Cerebral cortex: principles of operation. Oxford University Press, Oxford

    Book  Google Scholar 

  • Rolls ET (2016b) Motivation Explained: ultimate and proximate accounts of hunger and appetite. Adv Motiv Sci 3:187–249

    Article  Google Scholar 

  • Rolls ET (2016c) A non-reward attractor theory of depression. Neurosci Biobehav Rev 68:47–58. doi:10.1016/j.neubiorev.2016.05.007

    Article  PubMed  Google Scholar 

  • Rolls ET (2016d) Reward systems in the brain and nutrition. Annu Rev Nutr 36:435–470

    Article  CAS  PubMed  Google Scholar 

  • Rolls ET, Baylis GC (1986) Size and contrast have only small effects on the responses to faces of neurons in the cortex of the superior temporal sulcus of the monkey. Exp Brain Res 65(1):38–48

    Article  CAS  PubMed  Google Scholar 

  • Rolls ET, Baylis LL (1994) Gustatory, olfactory, and visual convergence within the primate orbitofrontal cortex. J Neurosci 14:5437–5452

    CAS  PubMed  Google Scholar 

  • Rolls ET, Deco G (2002) Computational neuroscience of vision. Oxford University Press, Oxford

    Google Scholar 

  • Rolls ET, Deco G (2010) The noisy brain: stochastic dynamics as a principle of brain function. Oxford University Press, Oxford

    Book  Google Scholar 

  • Rolls ET, Deco G (2016) Non-reward neural mechanisms in the orbitofrontal cortex. Cortex 83:27–38. doi:10.1080/23273798.2016.1203443

    Article  PubMed  Google Scholar 

  • Rolls ET, Grabenhorst F (2008) The orbitofrontal cortex and beyond: from affect to decision-making. Prog Neurobiol 86:216–244

    Article  PubMed  Google Scholar 

  • Rolls ET, Judge SJ, Sanghera M (1977) Activity of neurones in the inferotemporal cortex of the alert monkey. Brain Res 130:229–238

    Article  CAS  PubMed  Google Scholar 

  • Rolls ET, Rolls BJ, Rowe EA (1983) Sensory-specific and motivation-specific satiety for the sight and taste of food and water in man. Physiol Behav 30:185–192

    Article  CAS  PubMed  Google Scholar 

  • Rolls ET, Scott TR, Sienkiewicz ZJ, Yaxley S (1988) The responsiveness of neurones in the frontal opercular gustatory cortex of the macaque monkey is independent of hunger. J Physiol 397:1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolls ET, Sienkiewicz ZJ, Yaxley S (1989) Hunger modulates the responses to gustatory stimuli of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. Eur J Neurosci 1:53–60

    Article  PubMed  Google Scholar 

  • Rolls ET, Yaxley S, Sienkiewicz ZJ (1990) Gustatory responses of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. J Neurophysiol 64:1055–1066

    CAS  PubMed  Google Scholar 

  • Rolls ET, Hornak J, Wade D, McGrath J (1994) Emotion-related learning in patients with social and emotional changes associated with frontal lobe damage. J Neurol Neurosurg Psychiatry 57:1518–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolls ET, Critchley H, Wakeman EA, Mason R (1996a) Responses of neurons in the primate taste cortex to the glutamate ion and to inosine 5′-monophosphate. Physiol Behav 59:991–1000

    Article  CAS  PubMed  Google Scholar 

  • Rolls ET, Critchley HD, Mason R, Wakeman EA (1996b) Orbitofrontal cortex neurons: role in olfactory and visual association learning. J Neurophysiol 75:1970–1981

    CAS  PubMed  Google Scholar 

  • Rolls ET, Critchley HD, Treves A (1996c) The representation of olfactory information in the primate orbitofrontal cortex. J Neurophysiol 75(5):1982–1996

    CAS  PubMed  Google Scholar 

  • Rolls ET, Critchley HD, Browning AS, Hernadi A, Lenard L (1999) Responses to the sensory properties of fat of neurons in the primate orbitofrontal cortex. J Neurosci 19:1532–1540

    CAS  PubMed  Google Scholar 

  • Rolls ET, Kringelbach ML, de Araujo IET (2003) Different representations of pleasant and unpleasant odors in the human brain. Eur J Neurosci 18:695–703

    Article  PubMed  Google Scholar 

  • Rolls ET, Critchley HD, Browning AS, Inoue K (2006) Face-selective and auditory neurons in the primate orbitofrontal cortex. Exp Brain Res 170:74–87

    Article  PubMed  Google Scholar 

  • Rolls ET, Grabenhorst F, Parris BA (2008) Warm pleasant feelings in the brain. NeuroImage 41:1504–1513

    Article  PubMed  Google Scholar 

  • Rolls ET, Critchley HD, Verhagen JV, Kadohisa M (2010) The representation of information about taste and odor in the orbitofrontal cortex. Chemosens Percept 3:16–33. doi:10.1007/s12078-009-9054-4

    Article  Google Scholar 

  • Rolls ET, Cheng W, Qiu J, Liu W, Chang M, Huang C-C, Wang X-F, Zhang J, Pu J-C, Tsai S-J, Lin C-P, Wang F, Xie P, Feng J (2016) Medial reward and lateral non-reward orbitofrontal cortex circuits change in opposite directions in depression. Brain 139:3296–3309

    Article  PubMed  Google Scholar 

  • Rolls ET, Scott TR (2003) Central taste anatomy and neurophysiology. In: Doty RL (ed) Handbook of olfaction and gustation, 2nd edn. Dekker, New York, pp 679–705

    Google Scholar 

  • Sanghera MK, Rolls ET, Roper-Hall A (1979) Visual responses of neurons in the dorsolateral amygdala of the alert monkey. Exp Neurol 63:610–626

    Article  CAS  PubMed  Google Scholar 

  • Schoenbaum G, Chiba AA, Gallagher M (1999) Neural encoding in orbitofrontal cortex and basolateral amygdala during olfactory discrimination learning. J Neurosci 19:1876–1884

    CAS  PubMed  Google Scholar 

  • Schoenbaum G, Roesch MR, Stalnaker TA, Takahashi YK (2009) A new perspective on the role of the orbitofrontal cortex in adaptive behaviour. Nat Rev Neurosci 10(12):885–892. doi:10.1038/nrn2753. nrn2753 [pii]

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scott TR, Karadi Z, Oomura Y, Nishino H, Plata-Salaman CR, Lenard L, Giza BK, Aou S (1993) Gustatory neural coding in the amygdala of the alert macaque monkey. J Neurophysiol 69(6):1810–1820

    CAS  PubMed  Google Scholar 

  • Scott TR, Plata-Salaman CR (1999) Taste in the monkey cortex. Physiol Behav 67:489–511

    Article  CAS  PubMed  Google Scholar 

  • Scott TR, Small DM (2009) The role of the parabrachial nucleus in taste processing and feeding. Ann N Y Acad Sci 1170:372–377. doi:10.1111/j.1749-6632.2009.03906.x. NYAS03906 [pii]

    Article  PubMed  Google Scholar 

  • Scott TR, Yaxley S, Sienkiewicz ZJ, Rolls ET (1986a) Gustatory responses in the frontal opercular cortex of the alert cynomolgus monkey. J Neurophysiol 56:876–890

    CAS  PubMed  Google Scholar 

  • Scott TR, Yaxley S, Sienkiewicz ZJ, Rolls ET (1986b) Taste responses in the nucleus tractus solitarius of the behaving monkey. J Neurophysiol 55:182–200

    CAS  PubMed  Google Scholar 

  • Small DM, Scott TR (2009) Symposium overview: what happens to the pontine processing? Repercussions of interspecies differences in pontine taste representation for tasting and feeding. Ann N Y Acad Sci 1170:343–346. doi:10.1111/j.1749-6632.2009.03918.x. NYAS03918 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  • Thorpe SJ, Rolls ET, Maddison S (1983) Neuronal activity in the orbitofrontal cortex of the behaving monkey. Exp Brain Res 49:93–115

    Article  CAS  PubMed  Google Scholar 

  • Verhagen JV, Kadohisa M, Rolls ET (2004) The primate insular/opercular taste cortex: neuronal representations of the viscosity, fat texture, grittiness, temperature and taste of foods. J Neurophysiol 92(3):1685–1699. doi:10.1152/jn.00321.2004

    Article  PubMed  Google Scholar 

  • Verhagen JV, Rolls ET, Kadohisa M (2003) Neurons in the primate orbitofrontal cortex respond to fat texture independently of viscosity. J Neurophysiol 90(3):1514–1525. doi:10.1152/jn.00320.2003

    Article  PubMed  Google Scholar 

  • Whalen PJ, Phelps EA (eds) (2009) The human amygdala. Guilford, New York

    Google Scholar 

  • Wilson FAW, Rolls ET (2005) The primate amygdala and reinforcement: a dissociation between rule-based and associatively-mediated memory revealed in amygdala neuronal activity. Neuroscience 133:1061–1072

    Article  CAS  PubMed  Google Scholar 

  • Wise SP (2008) Forward frontal fields: phylogeny and fundamental function. Trends Neurosci 31(12):599–608. doi:10.1016/j.tins.2008.08.008. S0166-2236(08)00207-5 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Scott TR (1996) The effect of satiety on responses of gustatory neurons in the amygdala of alert cynomolgus macaques. Brain Res 740(1–2):193–200

    Article  CAS  PubMed  Google Scholar 

  • Yaxley S, Rolls ET, Sienkiewicz ZJ (1988) The responsiveness of neurons in the insular gustatory cortex of the macaque monkey is independent of hunger. Physiol Behav 42:223–229

    Article  CAS  PubMed  Google Scholar 

  • Yaxley S, Rolls ET, Sienkiewicz ZJ (1990) Gustatory responses of single neurons in the insula of the macaque monkey. J Neurophysiol 63:689–700

    CAS  PubMed  Google Scholar 

  • Yaxley S, Rolls ET, Sienkiewicz ZJ, Scott TR (1985) Satiety does not affect gustatory activity in the nucleus of the solitary tract of the alert monkey. Brain Res 347:85–93. doi:0006-8993(85)90891-1 [pii]

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edmund T. Rolls .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Rolls, E.T. (2017). Evolution of the Emotional Brain. In: Watanabe, S., Hofman, M., Shimizu, T. (eds) Evolution of the Brain, Cognition, and Emotion in Vertebrates. Brain Science. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56559-8_12

Download citation

Publish with us

Policies and ethics