Skip to main content

Overview of Brain Evolution: Lobe-Finned Fish vs. Ray-Finned Fish

  • Chapter
  • First Online:
Evolution of the Brain, Cognition, and Emotion in Vertebrates

Part of the book series: Brain Science ((BRASC))

Abstract

Bony jawed vertebrates (Osteichthyes) are divided into two groups, ray-finned fish (Actinopterygii) and lobe-finned fish (Sarcopterygii). The tetrapod (including mammals and birds) is a group of lobe-finned “fish” specialized in terrestrial life. Although the overall brain organization is conserved, significant differences exist within each brain region between Actinopterygii and Sarcopterygii. This chapter introduces a new view of the vertebrate brain organization; more particularly, we propose revised subdivisions in the anterior forebrain, which was revealed through comparative analyses between Actinopterygii and Sarcopterygii.

Behaviorally, some teleosts (a group of Actinopterygii) demonstrate higher order cognitive functions such as tool use or transitive inference. Moreover the “fish brains” are not necessarily simpler than tetrapod brains, and some teleost species have an enlarged pallium (dorsal telencephalon) as it is the case in amniotes. Nonetheless, the anatomical organization of the teleost brain is very different from that of the tetrapods, and there are many inconsistencies when we consider that these functional similarities are inherited from the common ancestor. It is possible that the nervous system is highly plastic during evolution, and more convergent evolution has taken place than is currently thought.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Affaticati P, Yamamoto K, Rizzi B, Bureau C, Peyriéras N, Pasqualini C, Demarque M, Vernier P (2015) Identification of the optic recess region as a morphogenetic entity in the zebrafish forebrain. Sci Rep 5:8738

    Article  PubMed  PubMed Central  Google Scholar 

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    Article  CAS  PubMed  Google Scholar 

  • Aoki T, Kinoshita M, Aoki R, Agetsuma M, Aizawa H, Yamazaki M, Takahoko M, Amo R, Arata A, Higashijima S, Tsuboi T, Okamoto H (2013) Imaging of neural ensemble for the retrieval of a learned behavioral program. Neuron 78:881–894

    Article  CAS  PubMed  Google Scholar 

  • Ball JN (1981) Hypothalamic control of the pars distalis in fishes, amphibians, and reptiles. Gen Comp Endocrinol 44:135–170

    Article  CAS  PubMed  Google Scholar 

  • Bally-Cuif L, Vernier P (2010) Organization and physiology of the zebrafish nervous system. In: Perry SF, Ekker M, Farrell AP, Brauner CJ (eds) Zebrafish. Elsevier, Amsterdam, pp 25–80

    Chapter  Google Scholar 

  • Del Bene F, Wyart C, Robles E, Tran A, Looger L, Scott EK, Isacoff EY, Baier H (2010) Filtering of visual information in the tectum by an identified neural circuit. Science 330:669–673

    Article  PubMed  PubMed Central  Google Scholar 

  • Bingman VP, Yates G (1992) Hippocampal lesions impair navigational learning in experienced homing pigeons. Behav Neurosci 106:229–232

    Article  CAS  PubMed  Google Scholar 

  • Biran J, Tahor M, Wircer E, Levkowitz G (2015) Role of developmental factors in hypothalamic function. Front Neuroanat 9:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruce LL, Braford MR (2009) Evolution of the limbic system. In: Squire LR (ed) Encyclopedia of neuroscience, vol 4. Academic, Oxford, pp 43–55

    Chapter  Google Scholar 

  • Butler AB, Reiner A, Karten HJ (2011) Evolution of the amniote pallium and the origins of mammalian neocortex. Ann N Y Acad Sci 1225:14–27

    Article  PubMed  PubMed Central  Google Scholar 

  • Butler AB (1994a) The evolution of the dorsal thalamus of jawed vertebrates, including mammals: cladistic analysis and a new hypothesis. Brain Res Brain Res Rev 19:29–65

    Article  CAS  PubMed  Google Scholar 

  • Butler AB (1994b) The evolution of the dorsal pallium in the telencephalon of amniotes: cladistic analysis and a new hypothesis. Brain Res Brain Res Rev 19:66–101

    Article  CAS  PubMed  Google Scholar 

  • Casini G, Bingman VP, Bagnoli P (1986) Connections of the pigeon dorsomedial forebrain studied with WGA-HRP and 3H-proline. J Comp Neurol 245:454–470

    Article  CAS  PubMed  Google Scholar 

  • Cavodeassi F, Houart C (2012) Brain regionalization: of signaling centers and boundaries. Dev Neurobiol 72:218–233

    Article  PubMed  Google Scholar 

  • Cohen DH (1975) Involvement of the avian amygdalar homologue (archistriatum posterior and mediale) in defensively conditioned heart rate change. J Comp Neurol 160:13–35

    Article  CAS  PubMed  Google Scholar 

  • DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285

    Article  CAS  PubMed  Google Scholar 

  • Demchyshyn LL, Sugamori KS, Lee FJ, Hamadanizadeh SA, Niznik HB (1995) The dopamine D1D receptor. Cloning and characterization of three pharmacologically distinct D1-like receptors from Gallus domesticus. J Biol Chem 270:4005–4012

    Article  CAS  PubMed  Google Scholar 

  • Dirian L, Galant S, Coolen M, Chen W, Bedu S, Houart C, Bally-Cuif L, Foucher I (2014) Spatial regionalization and heterochrony in the formation of adult pallial neural stem cells. Dev Cell 30:123–136

    Article  CAS  PubMed  Google Scholar 

  • Domínguez L, Morona R, González A, Moreno N (2013) Characterization of the hypothalamus of Xenopus laevis during development. I. The alar regions. J Comp Neurol 521:725–759

    Article  PubMed  Google Scholar 

  • Dufour S, Weltzien F-A, Sebert M-E, Le Belle N, Vidal B, Vernier P, Pasqualini C (2005) Dopaminergic inhibition of reproduction in teleost fishes: ecophysiological and evolutionary implications. Ann N Y Acad Sci 1040:9–21

    Google Scholar 

  • Dugas-Ford J, Ragsdale CW (2015) Levels of homology and the problem of neocortex. Annu Rev Neurosci 38:351–368

    Article  CAS  PubMed  Google Scholar 

  • Echevarría D, Vieira C, Gimeno L, Martínez S (2003) Neuroepithelial secondary organizers and cell fate specification in the developing brain. Brain Res Brain Res Rev 43:179–191

    Article  PubMed  Google Scholar 

  • Fernandez AS, Pieau C, Reperant J, Boncinelli E, Wassef M (1998) Expression of the Emx-1 and Dlx-1 homeobox genes define three molecularly distinct domains in the telencephalon of mouse, chick, turtle and frog embryos: implications for the evolution of telencephalic subdivisions in amniotes. Development 125:2099–2111

    CAS  PubMed  Google Scholar 

  • Finger TE (2008) Sorting food from stones: the vagal taste system in Goldfish, Carassius auratus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 194:135–143

    Article  PubMed  PubMed Central  Google Scholar 

  • Fontaine R, Affaticati P, Bureau C, Colin I, Demarque M, Dufour S, Vernier P, Yamamoto K, Pasqualini C (2015) Dopaminergic neurons controlling anterior pituitary functions: anatomy and ontogenesis in zebrafish. Endocrinology 156:2934–2948

    Article  CAS  PubMed  Google Scholar 

  • Gorski JA, Talley T, Qiu M, Puelles L, Rubenstein JL, Jones KR (2002) Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J Neurosci 22:6309–6314

    CAS  PubMed  Google Scholar 

  • Grosenick L, Clement TS, Fernald RD (2007) Fish can infer social rank by observation alone. Nature 445:429–432

    Article  CAS  PubMed  Google Scholar 

  • Güntürkün O (2005a) The avian “prefrontal cortex” and cognition. Curr Opin Neurobiol 15:686–693

    Article  PubMed  Google Scholar 

  • Güntürkün O (2005b) Avian and mammalian “prefrontal cortices”: limited degrees of freedom in the evolution of the neural mechanisms of goal-state maintenance. Brain Res Bull 66:311–316

    Article  PubMed  Google Scholar 

  • Harrington MJ, Hong E, Brewster R (2009) Comparative analysis of neurulation: first impressions do not count. Mol Reprod Dev 76:954–965

    Article  CAS  PubMed  Google Scholar 

  • Herget U, Wolf A, Wullimann MF, Ryu S (2014) Molecular neuroanatomy and chemoarchitecture of the neurosecretory preoptic-hypothalamic area in zebrafish larvae. J Comp Neurol 522(7):1542–1564

    Article  CAS  PubMed  Google Scholar 

  • Holland PW, Garcia-Fernàndez J, Williams NA, Sidow A (1994) Gene duplications and the origins of vertebrate development. Development 1994(Suppl):125–133

    Google Scholar 

  • Holmgren N (1922) Points of view concerning forebrain morphology in lower vertebrates. J Comp Neurol 34:391–459

    Article  Google Scholar 

  • Holmgren N (1925) Points of view concerning forebrain morphology in higher vertebrates. Acta Zool 6:413–477

    Article  Google Scholar 

  • Hughes AL (1999) Phylogenies of developmentally important proteins do not support the hypothesis of two rounds of genome duplication early in vertebrate history. J Mol Evol 48:565–576

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa Y, Yamamoto N, Yoshimoto M, Ito H (2012) The primary brain vesicles revisited: are the three primary vesicles (forebrain/midbrain/hindbrain) universal in vertebrates? Brain Behav Evol 79:75–83

    Article  PubMed  Google Scholar 

  • Ito H, Yamamoto N (2009) Non-laminar cerebral cortex in teleost fishes? Biol Lett 5:117–121

    Article  PubMed  Google Scholar 

  • Ivanovitch K, Cavodeassi F, Wilson SW (2013) Precocious acquisition of neuroepithelial character in the eye field underlies the onset of eye morphogenesis. Dev Cell 27:293–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaillon O, Aury J-MM, Brunet F, Petit J-LL, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, Nicaud S, Jaffe D, Fisher S, Lutfalla G, Dossat C, Segurens B, Dasilva C, Salanoubat M, Levy M, Boudet N, Castellano S, Anthouard V, Jubin C, Castelli V, Katinka M, Vacherie B, Biémont C, Skalli Z, Cattolico L, Poulain J, De Berardinis V, Cruaud C, Duprat S, Brottier P, Coutanceau J-PP, Gouzy J, Parra G, Lardier G, Chapple C, McKernan KJ, McEwan P, Bosak S, Kellis M, Volff J-NN, Guigó R, Zody MC, Mesirov J, Lindblad-Toh K, Birren B, Nusbaum C, Kahn D, Robinson-Rechavi M, Laudet V, Schachter V, Quétier F, Saurin W, Scarpelli C, Wincker P, Lander ES, Weissenbach J, Roest Crollius H (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946–957

    Article  PubMed  Google Scholar 

  • Keynes R, Lumsden A (1990) Segmentation and the origin of regional diversity in the vertebrate central nervous system. Neuron 4:1–9

    Article  CAS  PubMed  Google Scholar 

  • Kiecker C, Lumsden A (2005) Compartments and their boundaries in vertebrate brain development. Nat Rev Neurosci 6:553–564

    Article  CAS  PubMed  Google Scholar 

  • Kirsch JA, Güntürkün O, Rose J (2008) Insight without cortex: lessons from the avian brain. Conscious Cogn 17:475–483

    Article  PubMed  Google Scholar 

  • Krayniak PF, Siegel A (1978a) Efferent connections of the septal area in the pigeon. Brain Behav Evol 15:389–404

    Article  CAS  PubMed  Google Scholar 

  • Krayniak PF, Siegel A (1978b) Efferent connections of the hippocampus and adjacent regions in the pigeon. Brain Behav Evol 15:372–388

    Article  CAS  PubMed  Google Scholar 

  • Lundin LG (1993) Evolution of the vertebrate genome as reflected in paralogous chromosomal regions in man and the house mouse. Genomics 16:1–19

    Article  CAS  PubMed  Google Scholar 

  • Maier S, Walkowiak W, Luksch H, Endepols H (2010) An indirect basal ganglia pathway in anuran amphibians? J Chem Neuroanat 40:21–35

    Article  CAS  PubMed  Google Scholar 

  • Marcus RC, Shimamura K, Sretavan D, Lai E, Rubenstein JL, Mason CA (1999) Domains of regulatory gene expression and the developing optic chiasm: correspondence with retinal axon paths and candidate signaling cells. J Comp Neurol 403:346–358

    Article  CAS  PubMed  Google Scholar 

  • Margrie TW, Rostas JA, Sah P (1998) Long-term potentiation of synaptic transmission in the avian hippocampus. J Neurosci 18:1207–1216

    CAS  PubMed  Google Scholar 

  • Mueller T, Dong Z, Berberoglu MA, Guo S (2011) The dorsal pallium in zebrafish, Danio rerio (Cyprinidae, Teleostei). Brain Res 1381:95–105

    Google Scholar 

  • Northcutt RG (1995) The forebrain of gnathostomes: in search of a morphotype. Brain Behav Evol 46:275–318

    Article  CAS  PubMed  Google Scholar 

  • Pasko L (2010) Tool-like behavior in the sixbar wrasse, Thalassoma hardwicke (Bennett, 1830). Zoo Biol 29:767–773

    Article  PubMed  Google Scholar 

  • Picker A, Cavodeassi F, Machate A, Bernauer S, Hans S, Abe G, Kawakami K, Wilson SW, Brand M (2009) Dynamic coupling of pattern formation and morphogenesis in the developing vertebrate retina. PLoS Biol 7:e1000214

    Article  PubMed  PubMed Central  Google Scholar 

  • Portavella M, Torres B, Salas C (2004) Avoidance response in goldfish: emotional and temporal involvement of medial and lateral telencephalic pallium. J Neurosci 24:2335–2342

    Article  CAS  PubMed  Google Scholar 

  • Puelles L, Kuwana E, Puelles E, Bulfone A, Shimamura K, Keleher J, Smiga S, Rubenstein JL (2000) Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. J Comp Neurol 424:409–438

    Article  CAS  PubMed  Google Scholar 

  • Puelles L, Rubenstein JL (2003) Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci 26:469–476

    Article  CAS  PubMed  Google Scholar 

  • Raihani NJ, Pinto AI, Grutter AS, Wismer S, Bshary R (2012) Male cleaner wrasses adjust punishment of female partners according to the stakes. Proc Biol Sci 279:365–370

    Article  PubMed  Google Scholar 

  • Reiner A, Medina L, Veenman CL (1998) Structural and functional evolution of the basal ganglia in vertebrates. Brain Res Brain Res Rev 28:235–285

    Article  CAS  PubMed  Google Scholar 

  • Rink E, Wullimann MF (2001) The teleostean (zebrafish) dopaminergic system ascending to the subpallium (striatum) is located in the basal diencephalon (posterior tuberculum). Brain Res 889:316–330

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez F, Lopez JC, Vargas JP, Gomez Y, Broglio C, Salas C (2002) Conservation of spatial memory function in the pallial forebrain of reptiles and ray-finned fishes. J Neurosci 22:2894–2903

    CAS  PubMed  Google Scholar 

  • Roy A, de Melo J, Chaturvedi D, Thein T, Cabrera-Socorro A, Houart C, Meyer G, Blackshaw S, Tole S (2013) LHX2 is necessary for the maintenance of optic identity and for the progression of optic morphogenesis. J Neurosci 33:6877–6884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz i Altaba A, Palma V, Dahmane N (2002) Hedgehog-Gli signalling and the growth of the brain. Nat Rev Neurosci 3:24–33

    Article  CAS  PubMed  Google Scholar 

  • Ryu S, Mahler J, Acampora D, Holzschuh J, Erhardt S, Omodei D, Simeone A, Driever W (2007) Orthopedia homeodomain protein is essential for diencephalic dopaminergic neuron development. Curr Biol 17:873–880

    Article  CAS  PubMed  Google Scholar 

  • Saito K, Watanabe S (2006) Deficits in acquisition of spatial learning after dorsomedial telencephalon lesions in goldfish. Behav Brain Res 172:187–194

    Article  PubMed  Google Scholar 

  • Sherry DF, Vaccarino AL, Buckenham K, Herz RS (1989) The hippocampal complex of food-storing birds. Brain Behav Evol 34:308–317

    Article  CAS  PubMed  Google Scholar 

  • Shimamura K, Hartigan DJ, Martinez S, Puelles L, Rubenstein JL (1995) Longitudinal organization of the anterior neural plate and neural tube. Development 121:3923–3933

    CAS  PubMed  Google Scholar 

  • Smeets WJAJ, Reiner A (1994) Phylogeny and development of catecholamine systems in the CNS of vertebrates. Cambridge University Press, Cambridge

    Google Scholar 

  • Smith JJ, Kuraku S, Holt C, Sauka-Spengler T, Jiang N, Campbell MS, Yandell MD, Manousaki T, Meyer A, Bloom OE, Morgan JR, Buxbaum JD, Sachidanandam R, Sims C, Garruss AS, Cook M, Krumlauf R, Wiedemann LM, Sower SA, Decatur WA, Hall JA, Amemiya CT, Saha NR, Buckley KM, Rast JP, Das S, Hirano M, McCurley N, Guo P, Rohner N, Tabin CJ, Piccinelli P, Elgar G, Ruffier M, Aken BL, Searle SM, Muffato M, Pignatelli M, Herrero J, Jones M, Brown CT, Chung-Davidson Y-WW, Nanlohy KG, Libants SV, Yeh C-YY, McCauley DW, Langeland JA, Pancer Z, Fritzsch B, de Jong PJ, Zhu B, Fulton LL, Theising B, Flicek P, Bronner ME, Warren WC, Clifton SW, Wilson RK, Li W (2013) Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nat Genet 45(415–21):421e1–421e2

    Google Scholar 

  • Stephenson-Jones M, Samuelsson E, Ericsson J, Robertson B, Grillner S (2011) Evolutionary conservation of the basal ganglia as a common vertebrate mechanism for action selection. Curr Biol 21:1081–1091

    Article  CAS  PubMed  Google Scholar 

  • Surmeier DJ, Song WJ, Yan Z (1996) Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J Neurosci 16:6579–6591

    CAS  PubMed  Google Scholar 

  • Suárez R, Gobius I, Richards LJ (2014) Evolution and development of interhemispheric connections in the vertebrate forebrain. Front Hum Neurosci 8:497

    Article  PubMed  PubMed Central  Google Scholar 

  • Vieira C, Pombero A, García-Lopez R, Gimeno L, Echevarria D, Martínez S (2010) Molecular mechanisms controlling brain development: an overview of neuroepithelial secondary organizers. Int J Dev Biol 54:7–20

    Article  CAS  PubMed  Google Scholar 

  • Viktorin G, Chiuchitu C, Rissler M, Varga ZMM, Westerfield M (2009) Emx3 is required for the differentiation of dorsal telencephalic neurons. Dev Dyn 238:1984–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vígh B, Manzano e Silva MJ, Frank CL, Vincze C, Czirok SJ, Szabó A, Lukáts A, Szél A (2004) The system of cerebrospinal fluid-contacting neurons. Its supposed role in the nonsynaptic signal transmission of the brain. Histol Histopathol 19:607–628

    PubMed  Google Scholar 

  • Wilson SW, Houart C (2004) Early steps in the development of the forebrain. Dev Cell 6:167–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wullimann MF, Rupp B, Reichert H (1996) Neuroanatomy of the zebrafish brain: a topological atlas. Birkhäuser Verlag, Basel

    Book  Google Scholar 

  • Yamamoto K, Ruuskanen JO, Wullimann MF, Vernier P (2010) Two tyrosine hydroxylase genes in vertebrates new dopaminergic territories revealed in the zebrafish brain. Mol Cell Neurosci 43:394–402

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto K, Vernier P (2011) The evolution of dopamine systems in chordates. Front Neuroanat 5:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamamoto K, Fontaine R, Pasqualini C, Vernier P (2015) Classification of dopamine receptor genes in vertebrates: nine subtypes in osteichthyes. Brain Behav Evol 86:164–175

    Article  PubMed  Google Scholar 

  • Yamamoto K, Mirabeau O, Bureau C, Blin M, Michon-Coudouel S, Demarque M, Vernier P (2013) Evolution of dopamine receptor genes of the D1 class in vertebrates. Mol Biol Evol 30:833–843

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto K, Ruuskanen JO, Wullimann MF, Vernier P (2011) Differential expression of dopaminergic cell markers in the adult zebrafish forebrain. J Comp Neurol 519:576–598

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto N, Ishikawa Y, Yoshimoto M, Xue H-GG, Bahaxar N, Sawai N, Yang C-YY, Ozawa H, Ito H (2007) A new interpretation on the homology of the teleostean telencephalon based on hodology and a new eversion model. Brain Behav Evol 69:96–104

    Article  PubMed  Google Scholar 

  • Yamamoto N, Ito H (2005) Fiber connections of the anterior preglomerular nucleus in cyprinids with notes on telencephalic connections of the preglomerular complex. J Comp Neurol 491:212–233

    Article  PubMed  Google Scholar 

  • Zeier H, Karten HJ (1971) The archistriatum of the pigeon: organization of afferent and efferent connections. Brain Res 31:313–326

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Drs. Ann Butler, Naoyuki Yamamoto, Laura Bruce, Cliff Ragsdale, and Onur Güntürkün for the discussion which helped a lot for writing this chapter. We also thank laboratories of Drs. Laure Bally-Cuif, Sylvie Rétaux, and Koichi Kawakami, for sharing their unpublished data. Finally we thank Drs. Michaël Demarque, Catherine Pasqualini, Philippe Vernier, Alessandro Alunni, Maryline Blin, and Shauna Katz for the critical reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kei Yamamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Yamamoto, K., Bloch, S. (2017). Overview of Brain Evolution: Lobe-Finned Fish vs. Ray-Finned Fish. In: Watanabe, S., Hofman, M., Shimizu, T. (eds) Evolution of the Brain, Cognition, and Emotion in Vertebrates. Brain Science. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56559-8_1

Download citation

Publish with us

Policies and ethics