Skip to main content

Drebrins and Connexins: A Biomedical Perspective

  • Chapter
  • First Online:
Drebrin

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1006))

Abstract

In this chapter we summarize knowledge on the role of drebrin in cell–cell communications. Specifically, we follow drebrin-connexin-43 interactions and drebrin behavior at the cell–cell interface described earlier. Drebrin is a part of the actin cytoskeleton which is a target of numerous bacteria and viruses invading mammalian cells. Drebrin phosphorylation, self-inhibition and transition between filaments, particles, and podosomes underlie cellular mechanisms involved in diseases and cognitive disorders. Cytoskeletal rearrangements influence the state of gap junction contacts which regulate cell signaling and metabolic flow of information across cells in tissues. Taking into account that connexin-43 (Cx43) (together with Cx30) is heavily expressed in astrocytes and that drebrin supports cell–cell contacts, the understanding of details of how brain cells live and die reveals molecular pathology involved in neurodegeneration, Alzheimer’s disease (AD), other cognitive disorders, and aging.

Bidirectional connexin channels are permeable to Ca2+ ions, IP3, ATP, and cAMP. Connexin hemichannels are important for paracrine regulation and can release and exchange energy with other cells using ATP to transfer information and to support damaged cells. Connexin channels, hemichannels, and adhesion plaques are regulated by assembly and disassembly of the actin cytoskeleton. Drebrin degradation can alter gap junction communication, and drebrin level is decreased in the brain of AD patients. The diversity of drebrin functions in neurons, astrocytes, and non-neuronal cells still remains to be revealed. We believe that the knowledge on drebrin summarized here will contribute to key questions, “covering the gap” between cell–cell communications and the submembrane cytoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhmanova A, Stehbens SJ, Yap AS (2009) Touch, grasp, deliver and control: functional cross-talk between microtubules and cell adhesions. Traffic 10:268–274. doi:10.1111/j.1600-0854.2008.00869.x

    Article  CAS  PubMed  Google Scholar 

  • Aktories K, Just I (1995) Monoglucosylation of low-molecular mass GTP-binding rho proteins by clostridial cytotoxins. Trends Cell Biol 5:441–443

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Maubecin V, Garcia-Hernandez F, Williams JT, Van Bockstaele EJ (2000) Functional coupling between neurons and glia. J Neurosci 20:4091–4098

    CAS  PubMed  Google Scholar 

  • Ambrosi C, Ren C, Spagnol G, Cavin G, Cone A, Grintsevich EE, Sosinsky GE, Sorgen PL (2016) Connexin43 forms supramolecular complexes through non-overlapping binding sites fro drebrin, tubulin, and ZO-1. PLoS One 11(6):e0157073. doi:10.1371/journal.pone.0157073

    Article  PubMed  PubMed Central  Google Scholar 

  • Aoki C, Sekino Y, Hanamura K, Fujisawa S, Mahadomrongkul V, Ren Y, Shirao T (2005) Drebrin a is a postsynaptic protein that localizes in vivo to the submembranous surface of dendritic sites forming excitatory synapses. J Comp Neurol 483(4):383–402

    Google Scholar 

  • Aoki C, Kojima N, Sabaliauskas N, Shah L, Ahmed TH, Oakford J, Ahmed T, Yamazaki H, Hanamura K, Shirao T (2009) Drebrin a knockout eliminates the rapid form of homeostatic synaptic plasticity at excitatory synapses of intact adult cerebral cortex. J Comp Neurol 517:105–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arai H, Sato K, Uto A, Yasumoto Y (1991) Effect of transient cerebral ischemia in mongolian gerbils on synaptic vesicle protein (SVP-38) and developmentally regulated brain protein (drebrin). Neurosci Res Commun 9:143–150

    Google Scholar 

  • Arumugam H, Liu X, Colombo PJ, Corriveau RA, Belousov AB (2005) NMDA receptors regulate developmental gap junction uncoupling via CREB signaling. Nat Neurosci 8:1720–1726

    Article  CAS  PubMed  Google Scholar 

  • Asada H, Uyemura K, Shirao T (1994) Actin-binding protein, drebrin, accumulates in submembranous regions in parallel with neuronal differentiation. J Neurosci Res 38(2):149–159

    Article  CAS  PubMed  Google Scholar 

  • Bani-Yaghoub M et al (1999) Gap junction blockage interferes with neuronal and astroglial differentiation of mouse P19 embryonal carcinoma cells. Dev Genet 24:69–81

    Article  CAS  PubMed  Google Scholar 

  • Belliveau DJ et al (1997) Differential expression of gap junctions in neurons and astrocytes derived from P19 embryonal carcinoma cells. Dev Genet 21:187–200

    Article  CAS  PubMed  Google Scholar 

  • Belliveau DJ et al (2006) Enhanced neurite outgrowth in PC12 cells mediated by connexin hemichannels and ATP. J Biol Chem 281:20920–20931

    Article  CAS  PubMed  Google Scholar 

  • Bennett MVL, Zukin RS (2004) Electrical coupling and neuronal synchronization in the mammalian brain. Neuron 41(4):495–511

    Article  CAS  PubMed  Google Scholar 

  • Benninger RK, Zhang M, Head WS, Satin LS, Piston DW (2008) Gap junction coupling and calcium waves in the pancreatic islet. Biophys J 95:5048–5061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berridge MJ (2010) Calcium signalling remodelling and disease. Biochem Soc Trans 40:297–309

    Article  Google Scholar 

  • Berridge MJ (2012) Neural calcium signalling. Neuron 21:13–26

    Article  Google Scholar 

  • Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1(1):11–21

    Article  CAS  PubMed  Google Scholar 

  • Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R, Frabetti F, Vitale L, Pelleri MC, Tassani S, Piva F, Perez-Amodio S, Strippoli P, Canaider S (2013) An estimation of the number of cells in the human body. Ann Hum Biol 40(6):463–471. doi:10.3109/03014460.2013.807878

    Article  PubMed  Google Scholar 

  • Bosch M, Kielian T (2014) Hemichannels in neurodegenerative diseases: is there a link to pathology? Front Cell Neurosci 8:242. doi:10.3389/fncel.2014.00242

  • Butkevich E, Hülsmann S, Wenzel D, Shirao T, Duden R, Majoul I (2004) Drebrin is a novel connexin-43 binding partner that links gap junctions to the submembrane cytoskeleton. Curr Biol 14:650–658

    Article  CAS  PubMed  Google Scholar 

  • Butkevich E, Bodensiek K, Fakhri N, von Roden K, Schaap IA, Majoul I, Schmidt CF, Klopfenstein DR (2015) Drebrin-like protein DBN-1 is a sarcomere component that stabilizes actin filaments during muscle contraction. Nat Commun 6:7523. doi:10.1038/ncomms8523

    Article  PubMed  Google Scholar 

  • Chen Y et al (2001) Astrocytes protect neurons from nitric oxide toxicity by a glutathione-dependent mechanism. J Neurochem 77:1601–1610

    Article  CAS  PubMed  Google Scholar 

  • Chimura T, Launey T, Yoshida N (2015) Calpain-mediated degradation of Drebrin by Excitotoxicity In vitro and In vivo. PLoS One 10(4):e0125119. doi:10.1371/journal.pone.0125119

    Article  PubMed  PubMed Central  Google Scholar 

  • Dell’Acqua ML, Smith KE, Gorski JA, Horne EA, Gibson ES, Gomez LL (2006) Regulation of neuronal PKA signaling through AKAP targeting dynamics. Eur J Cell Biol 85(7):627–633

    Article  PubMed  Google Scholar 

  • Derangeon M, Bourmeyster N, Plaisance I, Pinet-Charvet C, Chen Q, Duthe F, Popoff MR, Sarrouilhe D, Hervé JC (2008) RhoA GTPase and F-actin dynamically regulate the permeability of Cx43-made channels in rat cardiac myocytes. J Biol Chem 283:30754–30765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duffy HS, Delmar M, Spray DC (2002) Formation of the gap junction nexus: binding partners for connexins. J Physiol Paris 96:243–249. doi:10.1016/S0928-4257(02)00012-8

    Article  CAS  PubMed  Google Scholar 

  • Elias LA, Wang DD, Kriegstein AR (2007) Gap junction adhesion is necessary for radial migration in the neocortex. Nature 448(7156):901–907. Epub 2007/08/24. nature06063

    Article  CAS  PubMed  Google Scholar 

  • Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635

    Article  CAS  PubMed  Google Scholar 

  • Farahani R, Pina-Benabou MH, Kyrozis A, Siddiq A, Barradas PC, Chiu FC, Cavalcante LA, Lai JCK, Stanton PK, Rozental R (2005) Alterations in metabolism and gap junction expression may determine the role of astrocytes as “good samaritans” or executioners. Glia 50:351–361. doi:10.1002/glia.20213

    Article  PubMed  Google Scholar 

  • Fauchereau F et al (2003) The RhoGAP activity of OPHN1, a new F-actin-binding protein is negatively controlled by its amino-terminal domain. Mol Cell Neurosci 23:574–586

    Article  CAS  PubMed  Google Scholar 

  • Genoud C, Houades V, Kraftsik R, Welker E, Giaume C (2015) Proximity of excitatory synapses and astroglial gap junctions in layer IV of the mouse barrel cortex. Neuroscience 291:241–249. doi:10.1016/j.neuroscience.2015.01.051

    Article  CAS  PubMed  Google Scholar 

  • Giepmans BNG, Moolenaar WH (1998) The gap junction protein connexin43 interacts with the second PDZ domain of the zona occludens-1 protein. Curr Biol 8(16):931–934

    Article  CAS  PubMed  Google Scholar 

  • Giepmans BNG, Verlaan I, Hengeveld T, Janssen H, Calafat C, Falk MM, Moolenaar WH (2001) Gap junction protein connexin-43 interacts directly with microtubules. Curr Biol 11:1364–1368

    Article  CAS  PubMed  Google Scholar 

  • Goodenough DA, Goliger JA, Paul DL (1996) Connexins, connexons, and intercellular communication. Annu Rev Biochem 65:475–502

    Article  CAS  PubMed  Google Scholar 

  • Grinstevich EE, Reisler E (2014) Drebrin inhibits cofilin-induced severing of F-actin. Cytoskeleton 71:472–483

    Article  Google Scholar 

  • Grintsevich EE, Galkin VE, Orlova A, Ytterberg AJ, Mikati MM, Kudryashov DS, Loo JA, Egelman EH, Reisler E (2010) Mapping of drebrin binding site on F-actin. J Mol Biol 398:542–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guthrie SC, Gilula NB (1989) Gap junctional communication and development. Trends Neurosci 12:12–16

    Article  CAS  PubMed  Google Scholar 

  • Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514

    Article  CAS  PubMed  Google Scholar 

  • Harigaya Y, Shoji M, Shirao T, Hirai S (1996) Disappearance of actin-binding protein, drebrin, from hippocampal synapses in Alzheimer's disease. J Neurosci Res 43(1):87–92

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Ishikawa R, Kawai-Hirai R, Takagi T, Taketomi A, Shirao T (1999) Domain analysis of the actin-binding and actin-remodeling activities of drebrin. Exp Cell Res 253:673–680

    Article  CAS  PubMed  Google Scholar 

  • Herculano-Houzel S (2009) The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci 3:31. doi:org/10.3389/neuro.09.031.2009

    Google Scholar 

  • Hogan PG, Rao A (2007) Dissecting ICRAC, a store-operated calcium current. Trends Biochem Sci 32:235–245

    Article  CAS  PubMed  Google Scholar 

  • Ikeda K, Shirao T, Toda M, Asada H, Toya S, Uyemura K (1995) Effect of a neuron-specific actin-binding protein, drebrin a, on cell-substratum adhesion. Neurosci Lett 194(3):197–200

    Article  CAS  PubMed  Google Scholar 

  • Ikeda K, Kaub PA, Asada H, Uyemura K, Toya S, Shirao T (1996) Stabilization of adhesion plaques by the expression of drebrin a in fibroblasts. Brain Res Dev Brain Res 91(2):227–236

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa R, Hayashi K, Shirao T, Xue Y, Takagi T, Sasaki Y, Kohama K (1994) Drebrin, a development-associated brain protein from rat embryo, causes the dissociation of tropomyosin from actin filaments. J Biol Chem 269:29928–29933

    CAS  PubMed  Google Scholar 

  • Jeanson T, Pondaven A, Ezan P, Mouthon F, Charvériat M, Giaume C (2016) Antidepressants impact Connexin 43 channel functions in astrocytes. Front Cell Neurosci 9:495. doi:10.3389/fncel.2015.00495. eCollection

    Article  PubMed  PubMed Central  Google Scholar 

  • Jego P, Pacheco-Torres J, Araque A, Canals S (2014) Functional MRI in mice lacking IP3-dependent calcium signaling in astrocytes. J Cereb Blood Flow Metab 34(10):1599–1603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin MS, Tanaka Y, Sekino Y, Ren H, Yamazaki R, Kawai-Hirai N, Kojima ST (2002) A novel, brain-specific mouse drebrin: cDNA cloning, chromosomal mapping, genomic structure, expression, and functional characterization. Genomics 79:686–692

    Article  CAS  PubMed  Google Scholar 

  • Keon BH, Jedrzejewski PT, Paul DL, Goodenough DA (2000) Isoform specific expression of the neuronal F-actin binding protein, drebrin, in specialized cells of stomach and kidney epithelia. J Cell Sci 113(2):325–326

    CAS  PubMed  Google Scholar 

  • Kins S, Betz H, Kirsch J (2000) Collybistin, a newly identified brain-specific GEF, induces submembrane clustering of gephyrin. Nat Neurosci 3(1):22–29

    Article  CAS  PubMed  Google Scholar 

  • Kneussel M, Brandstatter JH, Gasnier B, Feng G, Sanes JR, Betz H (2001) Gephyrin-independent clustering of postsynaptic GABAA receptor subtypes. Mol Cell Neurosci 17:973–982

    Article  CAS  PubMed  Google Scholar 

  • Kojima N, Yasuda H, Hanamura K, Ishizuka Y, Sekino Y, Shirao T (2016) Drebrin a regulates hippocampal LTP and hippocampus-dependent fear learning in adult mice. Neuroscience 324:218–226

    Article  CAS  PubMed  Google Scholar 

  • Lan Z, Kurata WE, Martyn KD, Jin C, Lau AF (2005) Novel rab GAP-like protein, CIP85, interacts with connexin43 and induces its degradation. Biochemistry 44:2385–2396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majoul I, Sohn K, Wieland FT, Pepperkok R, Pizza M, Hillemann J, Söling HD (1998) KDEL receptor (Erd2p)-mediated retrograde transport of the cholera toxin a subunit from the Golgi involves COPI, p23, and the COOH terminus of Erd2p. J Cell Biol 143:601–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majoul I, Shirao T, Sekino Y, Duden R (2007) Many faces of drebrin: from building dendritic spines and stabilizing gap junctions to shaping neurite-like cell processes. Histochem Cell Biol 127:355–361

    Article  CAS  PubMed  Google Scholar 

  • Majoul IV, Onichtchouk D, Butkevich E, Wenzel D, Chailakhyan LM, Duden R (2009) Limiting transport steps and novel interactions of Connexin-43 along the secretory pathway. Histochem Cell Biol 132(3):263–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majoul IV, Gao L, Betzig E, Onichtchouk D, Butkevich E, Kozlov Y, Bukauskas F, Bennett MLV, Lippincott-Schwartz J, Duden R (2013) Fast structural responses of gap junction membrane domains to AB5 toxins. PNAS 110:E4125–E4133. doi:10.1073/pnas.1315850110

  • Malchiodi-Albedi F, Paradisi S, Di Nottia M, Simone D, Travaglione S, Falzano L, Fiorentini C (2012) CNF1 improves Astrocytic ability to support neuronal growth and differentiation in vitro. PLoS One 7(4):e34115. doi:org/10.1371/journal.pone.0034115

  • Marin O, Valiente M, Ge X, Tsai LH (2010) Guiding neuronal cell migrations. Cold Spring Harb Perspect Biol 2:a001834

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medvedev N, Popov V, Henneberger C, Kraev I, Rusakov DA, Stewart MG (2014) Glia selectively approach synapses on thin dendritic spines. Philos Trans R Soc Lond Ser B Biol Sci 369(1654):20140047. doi:10.1098/rstb.2014.0047

    Article  Google Scholar 

  • Mercer JC, Qi Q, Mottram LF, Law M, Bruce D, Iyer A, Shirao T, August A (2010) Chemico-genetic identification of Drebrin as a regulator of calcium responses. Intl J Biochem & Cell Biol 42(2):337–345. doi:doi. org/10.1016/j.biocel.2009.11.019

    Google Scholar 

  • Mizui T, Takahashi H, Sekino Y, Shirao T (2005) Overexpression of drebrin a in immature neurons induces the accumulation of F-actin and PSD-95 into dendritic filopodia, and the formation of large abnormal protrusions. Mol Cell Neurosci 30:149–157

    Article  CAS  PubMed  Google Scholar 

  • Mizui T, Kojima N, Yamazaki H, Katayama M, Hanamura K, Shirao T (2009) Drebrin E is involved in the regulation of axonal growth through actin-myosin interactions. J Neurochem 109:611–622

    Article  CAS  PubMed  Google Scholar 

  • Mizui T, Sekino Y, Yamazaki1 YIH, Takahashi H, Kojima N, Kojima M, Shirao T (2014) Myosin II ATPase activity mediates the long-term potentiation-induced exodus of stable F-actin bound by drebrin a from dendritic spines. PLoS One 9(1):e85367

    Google Scholar 

  • Moore AR, Zhou WL, Sirois CL, Belinsky GS, Zecevic N, Antic SD (2014) Connexin hemichannels contribute to spontaneous electrical activity in the human fetal cortex. PNAS 111(37):E3919–E3928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orellana JA, von Bernhardi R, Giaume C, Sáez JC (2012) Glial hemichannels and their involvement in aging and neurodegenerative diseases. Rev Neurosci 23:163–177. doi:10.1515/revneuro-2011-0065.

    Article  CAS  PubMed  Google Scholar 

  • Orellana JA, Martinez AD, Retamal MA (2013) Gap junction channels and hemichannels in the CNS: regulation by signaling molecules. Neuropharmacology 75:567

    Article  CAS  PubMed  Google Scholar 

  • Pakkenberg B, Gundersen HJG (1988) Total number of neurons and glial cells in human brain nuclei estimated by the disector and the fractionator. J Microsc 150:1–20

    Article  CAS  PubMed  Google Scholar 

  • Peitsch WK, Grund C, Kuhn C (1999) Drebrin is a widespread actin-associating protein enriched at junctional plaques, defining a specific microfilament anchorage system in polar epithelial cells. Eur J Cell Biol 78:767–778

    Article  CAS  PubMed  Google Scholar 

  • Peitsch WK, Hofmann I, Prätzel S et al (2001) Drebrin particles: components in the ensemble of proteins regulating actin dynamics of lamellipodia and filopodia. Eur J Cell Biol 80:567–579

    Article  CAS  PubMed  Google Scholar 

  • Penzes P, Beeser A, Chernoff J, Schiller MR, Eipper BA, Mains RE, Huganir RL (2003) Rapid induction of dendritic spine morphogenesis by trans-synaptic ephrinB-EphB receptor activation of the rho-GEF kalirin. Neuron 37:263–274

    Article  CAS  PubMed  Google Scholar 

  • Perea G, Sur M, Araque A (2014) Neuron-glia networks: integral gear of brain function. Front Cell Neurosci 8:378

    Article  PubMed  PubMed Central  Google Scholar 

  • Pannasch U et al (2014) Connexin 30 sets synaptic strength by controlling astroglial synapse invasion. Nat Neurosci 17:549–558

    Google Scholar 

  • Rao KV et al (2005) Astrocytes protect neurons from ammonia toxicity. Neurochem Res 30:1311–1318

    Article  CAS  PubMed  Google Scholar 

  • Rebecchi RMJ, Pentyala SN (2000) Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev 80:1291–1335

    CAS  PubMed  Google Scholar 

  • Ridley A (2000) Rho. In: Hall A (ed) GTPases, vol 24. Oxford University Press, Oxford, pp 89–136

    Google Scholar 

  • Robel S, Sontheimer H (2016) Glia as drivers of abnormal neuronal activity. Nat Neurosci 19:28–33. doi:10.1038/nn.4184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabatini BL, Maravall M, Svoboda K (2001) Ca(2+) signaling in dendritic spines. Curr Opin Neurobiol 11:349–356

    Article  CAS  PubMed  Google Scholar 

  • Schmidt G, Sehr P, Wilm M, Selzer J, Mann M, Aktories K (1997) Gln63 of rho is deamidated by Escherichia coli cytotoxic necrotizing factor 1. Nature 387:725–729

    Article  CAS  PubMed  Google Scholar 

  • Schaar BT, McConnell SK (2005) Cytoskeletal coordination during neuronal migration. Proc Natl Acad Sci U S A 102(38):13652–13657

    Google Scholar 

  • Sekino Y, Tanaka S, Hanamura K, Yamazaki H, Sasagawa Y, Xue Y, Hayashi K, Shirao T (2006) Activation of N-methyl-d-aspartate receptor induces a shift of drebrin distribution: disappearance from dendritic spines and appearance in dendritic shafts. Mol Cell Neurosci 31:493–504

    Article  CAS  PubMed  Google Scholar 

  • Shim KS, Lubec G (2002) Drebrin, a dendritic spine protein, is manifold decreased in brains of patients with Alzheimer's disease and down syndrome. Neurosci Lett 324:209–212

    Article  CAS  PubMed  Google Scholar 

  • Shirao T, Obata K (1985) Two acidic proteins associated with brain development in chick embryo. J Neurochem 44:1210–1216

    Article  CAS  PubMed  Google Scholar 

  • Shirao T, Obata K (1986) Immunochemical homology of 3 developmentally regulated brain proteins and their developmental change in neuronal distribution. Brain Res 394:233–244

    Article  CAS  PubMed  Google Scholar 

  • Shirao T, Sekino Y (2001) Clustering and anchoring mechanisms of molecular constituents of postsynaptic scaffolds in dendritic spines. Neurosci Res 40:1–7

    Article  CAS  PubMed  Google Scholar 

  • Shirao T, Kojima N, Kato Y, Obata K (1988) Molecular cloning of a cDNA for the developmentally regulated brain protein, drebrin. Brain Res 464:71–74

    Article  CAS  PubMed  Google Scholar 

  • Shirao T, Kojima N, Nabeta Y, Obata K (1989) Two forms of drebrins, developmentally regulated brain proteins in rat. Proc Japan Acad 65:169–172

    Article  CAS  Google Scholar 

  • Shirao T, Kojima N, Obata K (1992) Cloning of drebrin a and induction of neurite-like processes in drebrin-transfected cells. Neuroreport 3:109–112

    Article  CAS  PubMed  Google Scholar 

  • Shirao T, Hayashi K, Ishikawa R, Isa K, Asada H, Ikeda K, Uyemura K (1994) Formation of thick, curving bundles of actin by drebrin a expressed in fibroblasts. Exp Cell Res 215:145–153

    Article  CAS  PubMed  Google Scholar 

  • Sonego M, Oberoi M, Stoddart J, Gajendra S, Hendricusdottir R, Oozeer F, Lalli G (2015) Drebrin regulates neuroblast migration in the postnatal mammalian brain. PLoS ONE 10(5):e0126478. doi:doi. org/10.1371/journal.pone.0126478

    Google Scholar 

  • Song M, Kojima N, Hanamura K, Sekino Y, Inoue HK, Mikuni M et al (2008) Expression of drebrin E in migrating neuroblasts in adult rat brain: coincidence between drebrin E disappearance from cell body and cessation of migration. Neuroscience 152(3):670–682. doi:10.1016/j.neuroscience.2007.10.068

    Article  CAS  PubMed  Google Scholar 

  • Stevens B, Allen N, Vazquez LE, Howell GR, Christopherson KS, Nouri N, et al (2007) The Classical Complement Cascade Mediates CNS Synapse Elimination. Cell 131 (6):1164–1178

    Google Scholar 

  • Stout C, Goodenough D, Paul D (2004) Connexins: functions without junctions. Curr Opin Cell Biol 16:507–512

    Article  CAS  PubMed  Google Scholar 

  • Suh HN, Kim MO, Han HJ (2012) Laminin-111 stimulates proliferation of mouse embryonic stem cells through a reduction of gap Junctional intercellular communication via RhoA-mediated Cx43 phosphorylation and dissociation of Cx43/ZO-1/Drebrin complex. Stem Cells Dev 21(11):2058–2070

    Article  CAS  PubMed  Google Scholar 

  • Swanson RA et al (2004) Astrocyte influences on ischemic neuronal death. Curr Mol Med 4:193–205

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Sekino S, Tanaka S, Mizui T, Kishi S, Shirao T (2003) Drebrin-dependent actin clustering in dendritic filopodia governs synaptic targeting of postsynaptic density-95 and dendritic spine morphogenesis. J Neurosci 23:6586–6595

    CAS  PubMed  Google Scholar 

  • Takahashi H, Mizui T, Shirao T (2006) Down-regulation of drebrin a expression suppresses synaptic targeting of NMDA receptors in developing hippocampal neurons. J Neurochem 97:110–115

    Article  CAS  PubMed  Google Scholar 

  • Toda M, Shirao T, Uyemura K (1999) Suppression of an actin-binding protein, drebrin, by antisense transfection attenuates neurite outgrowth in neuroblastoma B104 cells. Dev Brain Res 114(2):193–200

    Article  CAS  Google Scholar 

  • Toyofuku T, Yabuki M, Otsu M, Kuzuya K, Hori M, Tada M (1998) Direct association of the gap junction protein connexin-43 with ZO+-1 in cardiac myocytes. J Biol Chem 273(21):12725–12731

    Google Scholar 

  • Toyofuku T, Akamatsu Y, Zhang H, Kuzuya T, Tada M, Hori M (2001) C-Src regulates the interaction between connexin-43 and ZO-1 in cardiac myocytes. J Biol Chem 276(3):1780–1788

    Google Scholar 

  • Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, Tamakawa H, Yamagami K, Inui J, Maekawa M, Narumiya S (1997) Calcium sensitization of smooth muscle mediated by a rho-associated protein kinase in hypertension. Nature 389:990–994

    Article  CAS  PubMed  Google Scholar 

  • Ullian EM, Sapperstein SK, Christopherson, Barres BA (2001) Control of Synapse Number by Glia. Science 291(5504):657–661

    Google Scholar 

  • Vargas MR et al (2008) Nrf2 activation in astrocytes protects against neurodegeneration in mouse models of familial amyotrophic lateral sclerosis. J Neurosci 28:13574–13581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334(6059):1081–1086

    Article  CAS  PubMed  Google Scholar 

  • Zador Z et al (2009) Role of aquaporin-4 in cerebral edema and stroke. Handb Exp Pharmacol 190:159–170

    Google Scholar 

  • Zhang Q, Harris AL, Abagyan R, Yeager M (2016) An electrostatic mechanism for Ca2+-mediated regulation of gap junction channels. Nat Commun 7:8770. doi:10.1038/ncomms9770

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Michael Berridge for inspiration and novel insights into Ca2+- dependent regulation mechanisms, and to Daniel K. Hartline and James Pawley for critical reading of our MS. We wish to apologize that we could not cite many important original articles due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina V. Majoul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Majoul, I.V., Ernesti, J.S., Butkevich, E.V., Duden, R. (2017). Drebrins and Connexins: A Biomedical Perspective. In: Shirao, T., Sekino, Y. (eds) Drebrin. Advances in Experimental Medicine and Biology, vol 1006. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56550-5_13

Download citation

Publish with us

Policies and ethics