Advertisement

Nutritional Correction for Hair Loss, Thinning of Hair, and Achieving New Hair Regrowth

  • Rajesh Rajput Rajendrasingh
Chapter

Abstract

Hair loss is multifactorial. Antiandrogens are inconsistent in clinical results. Instead of fighting hair loss, we focus on strengthening the hair roots and promoting better hair growth. The article lists non-androgenic causes, enlists foods to be added and avoided for good hair growth, and provides scientific evidence for role of nutrients in hair loss management. New process of autophagy conceals clinical detection of low nutrient levels through lab tests. It is experimentally proven that DHT causes accumulation of ROS which in turn releases TGF ß1 leading to miniaturization, and this action can be successfully blocked by the use of antioxidants. Changing food preferences and decreasing nutritive value of the foods make it necessary to have supplements. Too many supplements consumed together reduce the absorption and efficiency of one another. Therefore, a low-dose once in 3 days cyclical vitamin therapy has been proposed. Nutritional correction ensures wellness, good health, and good hair growth without the fear of side effects.

Keywords

Nutrition Hair loss Diet Cyclical vitamin 

References

  1. 1.
    Urysiak-Czubatka I, Kmieć ML, Broniarczyk-Dyła G. Assessment of the usefulness of dihydrotestosterone in the diagnostics of patients with androgenetic alopecia. Postepy Dermatol Alergol. 2014;31(4):207–15.CrossRefGoogle Scholar
  2. 2.
    Ellis JA, Stebbing M, Harrap SB. Genetic analysis of male pattern baldness and the 5 alpha reductase genes. J Invest Dermatol. 1998;110:849–53.CrossRefGoogle Scholar
  3. 3.
    Imbeault P, Findlay CS, Robidoux MA, Haman F, Blais JM, et al. Dysregulation of cytokine response in Canadian first nations communities: is there an association with persistent organic pollutant levels? PLoS One. 2012;7(7):e39931.  https://doi.org/10.1371/journal.pone.0039931.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Rajput R. Understanding hair loss due to air pollution and the approach to management. Hair Ther Transplant. 2015;5:133.Google Scholar
  5. 5.
    Mukhopadhyay S, Ghosh D, Chatterjee A, Sinha S, Tripathy S, Chandra AK. Evaluation of possible goitrogenic and anti-thyroidal effect of nitrate, a potential environmental pollutant. Indian J Physiol Pharmacol. 2005;49(3):284–8.PubMedGoogle Scholar
  6. 6.
    Langer P. The impacts of organochlorines and other persistent pollutants on thyroid and metabolic health. Front Neuroendocrinol. 2010;31(4):497–518.  https://doi.org/10.1016/j.yfrne.2010.08.001. Epub 2010 Aug 24CrossRefPubMedGoogle Scholar
  7. 7.
    Schell LM, Gallo MV. Relationships of putative endocrine disruptors to human sexual maturation and thyroid activity in youth. Physiol Behav. 2010;99(2):246–53.  https://doi.org/10.1016/j.physbeh.2009.09.015. Epub 2009 Oct 1CrossRefPubMedGoogle Scholar
  8. 8.
    Ialenti A, Inaro A, Moncada S, et al. Modulation of acute inflammation by endogenous nitric oxide. Eur J Pharmacol. 1992;211:177–82.CrossRefGoogle Scholar
  9. 9.
    Hruza LL, Pentlan AP. Mechanisms of UV-induced inflammation. J Invest Dermatol. 1993;100:35–41.CrossRefGoogle Scholar
  10. 10.
    Hermon CS, Nevins TD. IL-1alpha inhibits human hair follicle growth and hair fiber production in whole-organ culture. Lymphokine Cytokine Res. 1993;12:197–202.Google Scholar
  11. 11.
    Mahe YF, Buan B, Billoni N, et al. Pro-inflammatory cytokines cascade in human plucked hair. Skin Pharmacol. 1996;9:366–75.CrossRefGoogle Scholar
  12. 12.
    Mahe YF, Michelet JF, Billoni N, et al. Androgenetic alopecia and microinflammation. Int J Dermatol. 2000;39:576–84.CrossRefGoogle Scholar
  13. 13.
    Rinaldi F. Pollution, scalp and hair transplant. Hair Transplant Forum Int. 2008;18:227.Google Scholar
  14. 14.
    Trueb RM. Oxidative stress in ageing of hair. Int J Trichol. 2009;1:6–14.CrossRefGoogle Scholar
  15. 15.
    Trenam CW, Blake DR, Morris CJ. Skin inflammation: reactive oxygen species and the role of iron. J Invest Dermatol. 1992;99:675–82.CrossRefGoogle Scholar
  16. 16.
    Banger HS, Malhotra SK, Singh S, Mahajan M. Is early onset androgenic alopecia a marker of metabolic syndrome and carotid artery atherosclerosis in young Indian male patients? Int J Trichol. 2015;7:141–7.CrossRefGoogle Scholar
  17. 17.
    van Neste D, Tobin DJ. Hair cycle and hair pigmentation: dynamic interactions and changes associated with aging. Micron. 2004;35:193–200.CrossRefGoogle Scholar
  18. 18.
    Arck PC, Overall R, Spatz K, Liezman C, Handjiski B, Klapp BF, et al. Towards a “free radical theory of graying”: melanocyte apoptosis in the aging human hair follicle is an indicator of oxidative stress induced tissue damage. FASEB J. 2006;20:1567–9.CrossRefGoogle Scholar
  19. 19.
    Shindo Y, Witt E, Han D, Epstein W, Packer L. Enzymic and non-enzymic antioxidants in epidermis and dermis of human skin. J Invest Dermatol. 1994;102:122–4.CrossRefGoogle Scholar
  20. 20.
    Suliburska J. A comparison of levels of select minerals in scalp hair samples with estimated dietary intakes of these minerals in women of reproductive age. Biol Trace Elem Res. 2011;144:77–85.CrossRefGoogle Scholar
  21. 21.
    Sadek A, Ismail HM, Sallam HN, Salem M. Survey of hormonal levels in meat and poultry sold in Alexandria, Egypt. East Mediterr Health J. 1998;4(2):239–43.Google Scholar
  22. 22.
    Tupe R, Chiplonkar SA. Diet patterns of lactovegetarian adolescent girls: need for devising recipes with high zinc bioavailability. Nutrition. 2010;26(4):390–8.  https://doi.org/10.1016/j.nut.2009.05.018. Epub 2009 Jul 22CrossRefPubMedGoogle Scholar
  23. 23.
    Whiting DA. Chronic Telogen effluvium: increased scalp hair shedding in middle aged women. J Am Acad Dermatol. 1996;35:899–906.CrossRefGoogle Scholar
  24. 24.
    Lengg N, Heidecker B, Seifert B, Trüeb RM. Dietary supplement increases anagen hair rate in women with telogen effluvium: results of a double-blind placebo-controlled trial. Therapy. 2007;4:59–65.CrossRefGoogle Scholar
  25. 25.
    Rizer RL, Stephens TJ, Herndon JH, Sperber BR, Murphy J, Ablon GR. A marine protein-based dietary supplement for subclinical hair thinning/loss: results of a multisite, double-blind, placebo-controlled clinical trial. Int J Trichol. 2015;7:156–66.CrossRefGoogle Scholar
  26. 26.
    Davis DR, Epp MD, Riordan HD. Changes in USDA food composition data for 43 garden crops, 1950 to 1999. J Am Coll Nutr. 2004;23(6):669–82.CrossRefGoogle Scholar
  27. 27.
    Glynis A. A double-blind, placebo-controlled study evaluating the efficacy of an oral supplement in women with self-perceived thinning hair. J Clin Aesthet Dermatol. 2012;5(11):28–34.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Beoy LA, Woei WJ, Hay YK. Effects of tocotrienol supplementation on hair growth in human volunteers. Trop Life Sci Res. 2010;21(2):91–9.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Avci P, Gupta GK, Clark J, Wikonkal N, Hamblin MR. Low-level laser (light) therapy (LLLT) for treatment of hair loss. Lasers Surg Med. 2014;46(2):144–51.CrossRefGoogle Scholar
  30. 30.
    Lanzafame RJ, Blanche RR, Bodian AB, Chiacchierini RP, Fernandez-Obregon A, Kazmirek ER. The growth of human scalp hair mediated by visible red light laser and LED sources in males. Lasers Surg Med. 2013;45:487–95.CrossRefGoogle Scholar
  31. 31.
    Jimenez JJ, Wikramanayake TC, Bergfeld W, et al. Efficacy and safety of a low-level laser device in the treatment of male and female pattern hair loss: a Multicenter, randomized, sham device-controlled, double-blind study. Am J Clin Dermatol. 2014;15(2):115–27.CrossRefGoogle Scholar
  32. 32.
    Cook JD, Dassenko SA, Whittaker P. Calcium supplementation: effect on iron absorption. Am J Clin Nutr. 1991;53(1):106–11.CrossRefGoogle Scholar
  33. 33.
    Everts HB. Endogenous retinoids in the hair follicle and sebaceous gland. Biochim Biophys Acta. 2012;1821(1):222–9.CrossRefGoogle Scholar
  34. 34.
    Foitzik K, Spexard T, Nakamura M, Halsner U, Paus R. Towards dissecting the pathogenesis of retinoid-induced hair loss: all-trans retinoic acid induces premature hair follicle regression (catagen) by upregulation of transforming growth factor-beta2 in the dermal papilla. J Invest Dermatol. 2005;124(6):1119–26.CrossRefGoogle Scholar
  35. 35.
    Carlberg C. The concept of multiple vitamin D signaling pathways. J Invest Dermatol. 1996;1:10–4.Google Scholar
  36. 36.
    Rajput RJ. Cyclical medicine for hair loss management and improved results in hair transplantation. Hair Transplant Forum Int. 2008;18(6):208–10.Google Scholar
  37. 37.
    Rajput RJ. Controversy: is there a role for adjuvants in the management of male pattern hair loss? J Cutan Aesthet Surg. 2010;3(3):82–6.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Kwon OS, Han JH, Yoo HG, Chung JH, Cho KH, Eun HC, Kim KH. Human hair growth enhancement in vitro by green tea epigallocatechin-3-gallate (EGCG). Phytomedicine. 2007;14(7–8):551–5. Epub 2006 Nov 7CrossRefGoogle Scholar
  39. 39.
    Gandhi R, Snedeker SM. Breast cancer and environmental risk factors. New York State. http://envirocancer.cornell.edu/factsheet/diet/fs37.hormones.cfm
  40. 40.
    Spencer DK. The hormonal effects of diet on hair loss. In: The bald truth, Chapter 2. New York: Simon & Schuster Inc; 1998. p. 37–54.Google Scholar
  41. 41.
    Mayer AM. Historical changes in the mineral content of fruits and vegetables. Br Food J. 1997;99(6):207–11.CrossRefGoogle Scholar
  42. 42.
    Thomas D. A study on the mineral depletion of the foods available to us as a nation over the period 1940 to 1991. Nutr Health. 2003;17(2):85–115.CrossRefGoogle Scholar
  43. 43.
    White PJ, Broadley MR. Historical variation in the mineral composition of edible horticultural products. J Hortic Sci Biotechnol. 2005;80(6):660–7.CrossRefGoogle Scholar
  44. 44.
    Davis DR. Declining fruit and vegetable nutrient composition: what is the evidence? Hortscience. 2009;44(1):15–9.Google Scholar
  45. 45.
    Srikumar TS, Johansson GK, Ockerman PA, Gustafsson JA, Akesson B. Trace element status in healthy subjects switching from a mixed to a lactovegetarian diet for 12 mo. Am J Clin Nutr. 1992;55(4):885–90.CrossRefGoogle Scholar
  46. 46.
    Kadrabová J, Madaric A, Kováciková Z, Ginter E. Selenium status, plasma zinc, copper, and magnesium in vegetarians. Biol Trace Elem Res. 1995;50(1):13–24.CrossRefGoogle Scholar
  47. 47.
    Girat M, Cervello I, Nogues MR, Puerto AM, Ortin F, et al. Glutathione, glutathione S-transferase and reactive oxygen species of human scalp sebaceous glands in male pattern baldness. J Investig Dermatol. 1996;107:154–8.CrossRefGoogle Scholar
  48. 48.
    Koca R, Armutcu F, Altinyazar H, Gurel A. Evaluation of lipid peroxidation, oxidant/antioxidant status and serum nitric oxide levels in alopecia areata. Med Sci Monit. 2005;11:296–9.Google Scholar
  49. 49.
    Inui S, Fukuzato Y, Nakajima T, Yoshikawa K, Itami S. Androgen-inducible TGF-beta1 from balding dermal papilla cells inhibits epithelial cell growth: a clue to understand paradoxical effects of androgen on human hair growth. FASEB J Epub. 2002;16:1967–9.CrossRefGoogle Scholar
  50. 50.
    Itami S. Pathomechanism of androgenetic alopecia and new treatment. Nihon Ronen Igakkai Zasshi. 2004;41:598–600.CrossRefGoogle Scholar
  51. 51.
    Hee CE. The involvement of ROS on androgen inducible TGF beta 1 regulation derived from dermal papilla cells; a suggestive implication of ROS on androgenetic alopecia. J Am Acad Dermatol. 2008;58:84.CrossRefGoogle Scholar
  52. 52.
    Shin H, Yoo HG, Inui S, Itami S, Kim IG, et al. Induction of transforming growth factor-beta 1 by androgen is mediated by reactive oxygen species in hair follicle dermal papilla cells. BMB Rep. 2013;46:460–4.CrossRefGoogle Scholar
  53. 53.
    Kalkan G, Seçkin HY, Benli I. Relationship between manganese superoxide dismutase (MnSODAla-9Val) and glutathione peroxidase (GPx1 pro 197 Leu) gene polymorphisms and alopecia areata. Int J Clin Exp Med. 2015;8:21533–40.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Kubibidila S, Yu L, Ode D, Warrier RP. The immune response in protein-energy malnutrition and single nutrient deficiencies. In: Human nutrition: a comprehensive treatise, vol. 8. Boston, MA: Springer; 1993. p. 121–57.Google Scholar
  55. 55.
    Fraker PJ, King LE. Reprogramming of the immune system during zinc deficiency. Annu Rev Nutr. 2004;24:277–98.CrossRefGoogle Scholar
  56. 56.
    Trüeb RM. Molecular mechanisms of androgenetic alopecia. Exp Gerontol. 2002;37:981–90.CrossRefGoogle Scholar
  57. 57.
    Assunção Guimarães C, Linden R. Programmed cell deaths. Apoptosis and alternative deathstyles. Eur J Biochem. 2004;271:1638–50.CrossRefGoogle Scholar
  58. 58.
    Yoshimori T. Autophagy: a regulated bulk degradation process inside cells. Biochem Biophys Res Commun. 2004;313:453–8.CrossRefGoogle Scholar
  59. 59.
    Fraker PJ. Roles for cell death in zinc deficiency. J Nutr. 2005;135:359–62.CrossRefGoogle Scholar
  60. 60.
    Goette DK, Odom RB. Alopecia in crash dieters. JAMA. 1976;235:2622–3.CrossRefGoogle Scholar
  61. 61.
    Betsy A, Binitha M, Sarita S. Zinc deficiency associated with hypothyroidism: an overlooked cause of severe alopecia. Int J Trichol. 2013;5:40–2.CrossRefGoogle Scholar
  62. 62.
    Oztur P, Kurutas E, Ataseven A, Dokur N, Gumusalan Y, et al. BMI and levels of zinc, copper in hair, serum and urine of Turkish male patients with androgenetic alopecia. J Trace Elem Med Biol. 2014;28:266–70.CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hair RestoreMumbaiIndia

Personalised recommendations