Skip to main content

Ultrafast Photoswitching Dynamics of Azobenzenes with Intra- and Intermolecular Constraints

  • Chapter
  • First Online:
Photon-Working Switches

Abstract

Femtosecond time-resolved absorption and emission spectroscopy has been used to study the ultrafast photoinduced processes of azobenzenes (ABs) influenced by intra- and intermolecular constraints. For diazocine, an AB with an intramolecular bridge, accelerated molecular dynamics and increased switching efficiencies demonstrate that favourable pre-orientation and restricted molecular degrees of freedom in rigidified molecules may lead to improved optical switching properties. The significant effects of push–pull substitution were studied for the prototypical AB derivative Disperse Red 1 (DR1), which was shown to undergo sequential electronic deactivation and isomerisation. Finally, dramatic increases of the excited-state lifetimes of AB switches covalently embedded into polymeric micronetworks indicate that the photoisomerisation is severely resisted by mechanical forces inside the polymer environment. AB-functionalised polymer materials should thus avoid cross-linking or entanglement of the chromophores and provide ample free volume. Overall, the results demonstrate that detailed insight into the ultrafast photoswitching dynamics can provide guidelines for the design of photoswitchable systems with better performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feringa BL (ed) (2001) Molecular switches. Wiley-VCH, Weinheim

    Google Scholar 

  2. Balzani V, Credi A, Venturi M (2008) Molecular devices and machines: concepts and perspectives for the nanoworld. Wiley-VCH, Weinheim

    Book  Google Scholar 

  3. Balzani V, Credi A, Venturi M (2009) Light powered molecular machines. Chem Soc Rev 38:1542–1550

    Article  CAS  Google Scholar 

  4. Kawata S, Kawata Y (2000) Three-dimensional optical data storage using photochromic materials. Chem Rev 100:1777–1788

    Article  CAS  Google Scholar 

  5. Ercole F, Davis TP, Evans RA (2010) Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polym Chem 1:37–54

    Article  CAS  Google Scholar 

  6. Bouas-Laurent H, Dürr H (2001) Organic photochromism. Pure Appl Chem 73:639–665

    Article  CAS  Google Scholar 

  7. Rau H (2003) Azo compounds. In: Dürr H, Bouas-Laurent H (eds) Photochromism: molecules and systems. Elsevier, Amsterdam, p 165

    Chapter  Google Scholar 

  8. Dürr H (2004) Organische Photochromie. Angew Chem 116:3404–3418

    Article  Google Scholar 

  9. Dvornikov AS, Walker EP, Rentzepis PM (2009) Two-photon three-dimensional optical storage memory. J Phys Chem A 113:13633–13644

    Article  CAS  Google Scholar 

  10. Szaciłowski K (2008) Digital information processing in molecular systems. Chem Rev 108:3481–3548

    Article  CAS  Google Scholar 

  11. Gust D, Andréasson J, Pischel U, Moore TA, Moore AL (2012) Data and signal processing using photochromic molecules. Chem Commun 48:1947–1957

    Article  CAS  Google Scholar 

  12. Browne WR, Feringa BL (2006) Making molecular machines work. Nat Nanotechnol 1:25–35

    Article  CAS  Google Scholar 

  13. Iamsaard S, Aßhoff SJ, Matt B, Kudernac T, Cornelissen JJ, Fletcher SP, Katsonis N (2014) Conversion of light into macroscopic helical motion. Nat Chem 6:229–235

    Article  CAS  Google Scholar 

  14. Hell SW (2007) Far-field optical nanoscopy. Science 316:1153–1158

    Article  CAS  Google Scholar 

  15. Heilemann M, Dedecker P, Hofkens J, Sauer M (2009) Photoswitches: key molecules for subdiffraction-resolution fluorescence imaging and molecular quantification. Laser Photon Rev 3:180–202

    Article  CAS  Google Scholar 

  16. Hell SW (2015) Nanoscopy with focused light (Nobel lecture). Angew Chem Int Ed 54:8054–8066

    Article  CAS  Google Scholar 

  17. Tamai N, Miyasaka H (2000) Ultrafast dynamics of photochromic systems. Chem Rev 100:1875–1890

    Article  CAS  Google Scholar 

  18. Renth F, Siewertsen R, Temps F (2013) Enhanced photoswitching and ultrafast dynamics in structurally modified photochromic fulgides. Int Rev Phys Chem 32:1–38

    Article  CAS  Google Scholar 

  19. Klessinger M, Michl J (1995) Excited states and photochemistry of organic molecules. VCH Publishers, New York

    Google Scholar 

  20. Levine BG, Martínez TJ (2007) Isomerization through conical intersections. Annu Rev Phys Chem 58:613–634

    Article  CAS  Google Scholar 

  21. Matsika S, Krause P (2011) Nonadiabatic events and conical intersections. Annu Rev Phys Chem 62:621–643

    Article  CAS  Google Scholar 

  22. Domcke W, Yarkony DR, Köppel H (eds) (2004) Conical intersections: electronic structure, dynamics and spectroscopy. Advanced series in physical chemistry, vol 15. World Scientific, Singapore

    Google Scholar 

  23. Domcke W, Yarkony DR, Köppel H (eds) (2011) Conical intersections: theory, computation and experiment. Advanced series in physical chemistry, vol 17. World Scientific, Singapore

    Google Scholar 

  24. Such G, Evans RA, Yee LH, Davis TP (2003) Factors influencing photochromism of spiro-compounds within polymeric matrices. J Macromol Sci, Polym Rev C43:547–579

    Article  CAS  Google Scholar 

  25. Creatini L, Cusati T, Granucci G, Persico M (2008) Photodynamics of azobenzene in a hindering environment. Chem Phys 347:492–502

    Article  CAS  Google Scholar 

  26. Kasha M, Rawls HR, Ashraf El-Bayoumi M (1965) The exciton model in molecular spectroscopy. Pure Appl Chem 11:371–392

    Article  CAS  Google Scholar 

  27. Scholes GD (2003) Long-range resonance energy transfer in molecular systems. Annu Rev Phys Chem 54:57–87

    Article  CAS  Google Scholar 

  28. Fihey A, Perrier A, Browne WR, Jacquemin D (2015) Multiphotochromic molecular systems. Chem Soc Rev 44:3719–3759

    Article  CAS  Google Scholar 

  29. Briand J, Bräm O, Réhault J, Léonard J, Cannizzo A, Chergui M, Zanirato V, Olivucci M, Helbing J, Haacke S (2010) Coherent ultrafast torsional motion and isomerization of a biomimetic dipolar photoswitch. Phys Chem Chem Phys 12:3178–3187

    Article  CAS  Google Scholar 

  30. Léonard J, Briand J, Fusi S, Zanirato V, Olivucci M, Haacke S (2013) Isomer-dependent vibrational coherence in ultrafast photoisomerization. New J Phys 15:105022

    Article  CAS  Google Scholar 

  31. Siewertsen R, Schönborn JB, Hartke B, Renth F, Temps F (2011) Superior Z → E and E → Z photoswitching dynamics of dihydrodibenzodiazocine, a bridged azobenzene, by S1(nπ*) excitation at λ = 387 and 490 nm. Phys Chem Chem Phys 13:1054–1063

    Article  CAS  Google Scholar 

  32. Siewertsen R, Strübe F, Mattay J, Renth F, Temps F (2011) Tuning of switching properties and excited-state dynamics of fulgides by structural modifications. Phys Chem Chem Phys 13:3800–3808

    Article  CAS  Google Scholar 

  33. Yager KG, Barrett CJ (2006) Novel photo-switching using azobenzene functional materials. J Photochem Photobiol, A 182:250–261

    Article  CAS  Google Scholar 

  34. Siewertsen R, Neumann H, Buchheim-Stehn B, Herges R, Näther C, Renth F, Temps F (2009) Highly efficient reversible Z → E photoisomerization of a bridged azobenzene with visible light through resolved S1(nπ*) absorption bands. J Am Chem Soc 131:15594–15595

    Article  CAS  Google Scholar 

  35. Beharry AA, Woolley GA (2011) Azobenzene photoswitches for biomolecules. Chem Soc Rev 40:4422–4437

    Article  CAS  Google Scholar 

  36. Bandara HMD, Burdette SC (2012) Photoisomerization in different classes of azobenzene. Chem Soc Rev 41:1809–1825

    Article  CAS  Google Scholar 

  37. Garcia-Iríepa C, Marazzi M, Frutos LM, Sampedro D (2013) E/Z photochemical switches: syntheses, properties and applications. RSC Adv 3:6241–6266

    Article  CAS  Google Scholar 

  38. Baroncini M, Ragazzon G, Silvi S, Venturi M, Credi A (2015) The eternal youth of azobenzene: new photoactive molecular and supramolecular devices. Pure Appl Chem 87:537–545

    Article  CAS  Google Scholar 

  39. Sell H, Näther C, Herges R (2013) Amino-substituted diazocines as pincer-type photochromic switches. Beilstein J Org Chem 9:1–7

    Article  CAS  Google Scholar 

  40. Rau H, Lüdecke E (1982) On the rotation-inversion controversy on photoisomerization of azobenzenes. Experimental proof of inversion. J Am Chem Soc 104:1616–1620

    Article  CAS  Google Scholar 

  41. Rau H, Yu-Quan S (1988) Photoisomerization of sterically hindered azobenzenes. J Photochem Photobiol, A 42:321–327

    Article  CAS  Google Scholar 

  42. Lu YC, Diau EWG, Rau H (2005) Femtosecond fluorescence dynamics of rotation-restricted azobenzophanes: new evidence on the mechanism of trans→cis photoisomerization of azobenzene. J Phys Chem A 109:2090–2099

    Article  CAS  Google Scholar 

  43. Pancur T, Renth F, Temps F, Harbaum B, Krüger A, Herges R, Näther C (2005) Femtosecond fluorescence up-conversion spectroscopy of a rotation-restricted azobenzene after excitation to the S1 state. Phys Chem Chem Phys 7:1985–1989

    Article  CAS  Google Scholar 

  44. Singleton TA, Ramsay KS, Barsan MM, Butler IS, Barrett CJ (2012) Azobenzene photoisomerization under high external pressures: testing the strength of a light-activated molecular muscle. J Phys Chem B 116:9860–9865

    Article  CAS  Google Scholar 

  45. Sekkat Z, Morichére D, Dumont M, Loucif-Saïbi R, Delaire JA (1992) Photoisomerization of azobenzene derivatives in polymeric thin films. J Appl Phys 71:1543–1545

    Article  CAS  Google Scholar 

  46. Kumar GS, Neckers DC (1989) Photochemistry of azobenzene-containing polymers. Chem Rev 89:1915–1925

    Article  CAS  Google Scholar 

  47. Natansohn A, Rochon P (2002) Photoinduced motions in azo-containing polymers. Chem Rev 102:4139–4175

    Article  CAS  Google Scholar 

  48. Quick M, Dobryakov AL, Gerecke M, Richter C, Berndt F, Ioffe IN, Granovsky AA, Mahrwald R, Ernsting NP, Kovalenko SA (2014) Photoisomerization dynamics and pathways of trans- and cis-azobenzene in solution from broadband femtosecond spectroscopies and calculations. J Phys Chem B 118:8756–8771

    Article  CAS  Google Scholar 

  49. Tan EMM, Amirjalayer S, Smolarek S, Vdovin A, Zerbetto F, Buma WJ (2015) Fast photodynamics of azobenzene probed by scanning excited-state potential energy surfaces using slow spectroscopy. Nat Comm 6:5860. doi:10.1038/ncomms6860

    Article  Google Scholar 

  50. Liu RSH (2001) Photoisomerization by hula-twist: a fundamental supramolecular photochemical reaction. Acc Chem Res 34:555–562

    Article  CAS  Google Scholar 

  51. Liu RSH, Asato AE (1985) The primary process of vision and the structure of bathorhodopsin: a mechanism for photoisomerization. Proc Natl Acad Sci USA 82:259–263

    Article  CAS  Google Scholar 

  52. Dong M, Babalhavaeji A, Samanta S, Beharry AA, Woolley GA (2015) Red-shifting azobenzene photoswitches for in vivo use. Acc Chem Res 48:2662–2670

    Article  CAS  Google Scholar 

  53. Gille K, Knoll H, Quitzsch K (1999) Rate constants for the thermal cis-trans isomerization of azobenzene dyes in solvents, acetone/water mixtures and in microheterogeneous surfactant solutions. Int J Chem Kinet 31:337–350

    Article  CAS  Google Scholar 

  54. Delaire JA, Nakatani K (2000) Linear and nonlinear optical properties of photochromic molecules and materials. Chem Rev 100:1817–1845

    Article  CAS  Google Scholar 

  55. Gindre D, Boeglin A, Fort A, Mager L, Dorkenoo KD (2006) Rewritable optical data storage in azobenzene copolymers. Opt Express 14:9896–9901

    Article  CAS  Google Scholar 

  56. El-Khouly ME, Chen Y, Zhuang X, Fukuzumi S (2009) Long-lived charge-separated configuration of a push-pull archetype of Disperse Red 1 end-capped poly[9,9-bis(4-diphenyl-aminophenyl)fluorene]. J Am Chem Soc 131:6370–6371

    Article  CAS  Google Scholar 

  57. Zewail AH (2000) Femtochemistry: atomic-scale dynamics of the chemical bond. J Phys Chem A 104:5660–5694

    Article  CAS  Google Scholar 

  58. Shah J (1988) Ultrafast luminescence spectroscopy using sum frequency generation. IEEE J Quantum Electron 24:276–288

    Article  Google Scholar 

  59. Zhao LJ, Pérez-Lustres JL, Farztdinov V, Ernsting NP (2005) Femtosecond fluorescence spectroscopy by upconversion with tilted gate pulses. Phys Chem Chem Phys 7:1716–1725

    Article  CAS  Google Scholar 

  60. Arzhantsev S, Maroncelli M (2005) Design and characterization of a femtosecond fluorescence spectrometer based on optical Kerr gating. Appl Spectrosc 59:206–220

    Article  CAS  Google Scholar 

  61. Schmidt B, Laimgruber S, Zinth W, Gilch P (2003) A broadband kerr shutter for femtosecond fluorescence spectroscopy. Appl Phys B: Lasers Opt 76:809–814

    Article  CAS  Google Scholar 

  62. Sajadi M, Dobryakov AL, Garbin E, Ernsting NP, Kovalenko SA (2010) Time-resolved fluorescence spectra of cis-stilbene in hexane and acetonitrile. Chem Phys Lett 489:44–47

    Article  CAS  Google Scholar 

  63. Kovalenko SA, Dobryakov AL, Ruthmann J, Ernsting NP (1999) Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing. Phys Rev A 59:2369–2384

    Article  CAS  Google Scholar 

  64. Dobryakov AL, Kovalenko SA, Ernsting NP (2003) Electronic and vibrational coherence effects in broadband transient absorption spectroscopy with chirped supercontinuum probing. J Chem Phys 119:988–1002

    Article  CAS  Google Scholar 

  65. Dobryakov AL, Kovalenko SA, Ernsting NP (2005) Coherent and sequential contributions to femtosecond transient absorption spectra of a rhodamine dye in solution. J Chem Phys 123:044502

    Article  CAS  Google Scholar 

  66. Cerullo G, Manzoni C, Lüer L, Polli D (2007) Time-resolved methods in biophysics. 4. Broadband pump-probe spectroscopy system with sub-20 fs temporal resolution for the study of energy transfer processes in photosynthesis. Photochem Photobiol Sci 6:135–144

    Article  CAS  Google Scholar 

  67. Megerle U, Pugliesi I, Schriever C, Sailer CF, Riedle E (2009) Sub-50 fs broadband absorption spectroscopy with tunable excitation: putting the analysis of ultrafast molecular dynamics on solid ground. Appl Phys B: Lasers Opt 96:215–231

    Article  CAS  Google Scholar 

  68. Röttger K, Siewertsen R, Temps F (2012) Ultrafast electronic deactivation dynamics of the rare natural nucleobase hypoxanthine. Chem Phys Lett 536:140–146

    Article  CAS  Google Scholar 

  69. Röttger K, Wang S, Renth F, Bahrenburg J, Temps F (2015) A femtosecond pump–probe spectrometer for dynamics in transmissive polymer films. Appl Phys B: Lasers Opt 118:185–193

    Article  CAS  Google Scholar 

  70. Mahr H, Hirsch MD (1975) An optical up-conversion light gate with picosecond resolution. Opt Commun 13:96–99

    Article  Google Scholar 

  71. Cannizzo A, Bräm O, Zgrablic G, Tortschanoff A, Oskouei AA, van Mourik F, Chergui M (2007) Femtosecond fluorescence upconversion setup with broadband detection in the ultraviolet. Opt Lett 32:3555–3557

    Article  CAS  Google Scholar 

  72. Zhang XX, Würth C, Zhao L, Resch-Genger U, Ernsting NP, Sajadi M (2011) Femtosecond broadband fluorescence upconversion spectroscopy: improved setup and photometric correction. Rev Sci Instrum 82:063108

    Article  CAS  Google Scholar 

  73. Sajadi M, Quick M, Ernsting NP (2013) Femtosecond broadband fluorescence spectroscopy by down- and up-conversion in beta-barium borate crystals. Appl Phys Lett 103:173514

    Article  CAS  Google Scholar 

  74. Maroncelli M, MacInnis J, Fleming GR (1989) Polar-solvent dynamics and electron-transfer reactions. Science 243:1674–1681

    Article  CAS  Google Scholar 

  75. Fee RS, Maroncelli M (1994) Estimating the time-zero spectrum in time-resolved emission measurements of solvation dynamics. Chem Phys 183:235–247

    Article  CAS  Google Scholar 

  76. Eilers-König N, Kühne T, Schwarzer D, Vöhringer P, Schroeder J (1996) Femtosecond dynamics of intramolecular charge transfer in 4-dimethylamino-4′-cyanostilbene in polar solvents. Chem Phys Lett 253:69–76

    Article  Google Scholar 

  77. Bräm O, Messina F, El-Zohry AM, Cannizzo A, Chergui M (2012) Polychromatic femtosecond fluorescence studies of metal-polypyridine complexes in solution. Chem Phys 393:51–57

    Article  CAS  Google Scholar 

  78. Nakamura R, Kanematsu Y (2004) Femtosecond spectral snapshots based on electronic optical Kerr effect. Rev Sci Instrum 75:636–644

    Article  CAS  Google Scholar 

  79. Ma C, Kwok WM, Chan WS, Zuo P, Kan JTW, Toy PH, Phillips DL (2005) Ultrafast time-resolved study of photophysical processes involved in the photodeprotection of p-hydroxyphenacyl caged phototrigger compounds. J Am Chem Soc 127:1463–1472

    Article  CAS  Google Scholar 

  80. Chen K, Gallaher JK, Barker AJ, Hodgkiss JM (2014) Transient grating photoluminescence spectroscopy: an ultrafast method of gating broadband spectra. J Phys Chem Lett 5:1732–1737

    Article  CAS  Google Scholar 

  81. Alfano RR (ed) (2006) The supercontinuum laser source, 2nd edn. Springer, New York

    Google Scholar 

  82. Johnson PJM, Prokhorenko VI, Miller RJD (2009) Stable UV to IR supercontinuum generation in calcium fluoride with conserved circular polarization states. Opt Express 17:21488–21496

    Google Scholar 

  83. Berera R, van Grondelle R, Kennis JTM (2009) Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems. Photosynth Res 101:105–118

    Article  CAS  Google Scholar 

  84. Renth F, Foca M, Petter A, Temps F (2006) Ultrafast transient absorption spectroscopy of the photo-induced Z-E isomerization of a photochromic furylfulgide. Chem Phys Lett 428:62–67

    Article  CAS  Google Scholar 

  85. Siewertsen R, Renth F, Temps F, Sönnichsen F (2009) Parallel ultrafast E-C ring closure and E-Z isomerisation in a photochromic furylfulgide studied by femtosecond time-resolved spectroscopy. Phys Chem Chem Phys 11:5952–5961

    Article  CAS  Google Scholar 

  86. Riedle E, Bradler M, Wenninger M, Sailer CF, Pugliesi I (2013) Electronic transient spectroscopy from the deep UV to the NIR: unambiguous disentanglement of complex processes. Faraday Discuss 163:139–158

    Article  CAS  Google Scholar 

  87. Verma PK, Steinbacher A, Koch F, Nuernberger P, Brixner T (2015) Monitoring ultrafast intramolecular proton transfer processes in an unsymmetric β-diketone. Phys Chem Chem Phys 17:8459–8466

    Article  CAS  Google Scholar 

  88. Dobryakov AL, Pérez-Lustres JL, Kovalenko SA, Ernsting NP (2008) Femtosecond transient absorption with chirped pump and supercontinuum probe: perturbative calculation of transient spectra with general lineshape functions, and simplifications. Chem Phys 347:127–138

    Article  CAS  Google Scholar 

  89. Schriever C, Lochbrunner S, Riedle E, Nesbitt DJ (2008) Ultrasensitive ultraviolet-visible 20 fs absorption spectroscopy of low vapor pressure molecules in the gas phase. Rev Sci Instrum 79:013107

    Article  CAS  Google Scholar 

  90. Samanta S, Beharry AA, Sadovski O, McCormick TM, Babalhavaeji A, Tropepe V, Woolley GA (2013) Photoswitching azo compounds in vivo with red light. J Am Chem Soc 135:9777–9784

    Article  CAS  Google Scholar 

  91. Bléger D, Hecht S (2015) Visible-light-activated molecular switches. Angew Chem Int Ed 54:11338–11349

    Article  CAS  Google Scholar 

  92. Bléger D, Schwarz J, Brouwer AM, Hecht S (2012) o-Fluoroazobenzenes as readily synthesized photoswitches offering nearly quantitative two-way isomerization with visible light. J Am Chem Soc 134:20597–20600

    Article  CAS  Google Scholar 

  93. Satzger H, Spörlein S, Root C, Wachtveitl J, Zinth W, Gilch P (2003) Fluorescence spectra of trans- and cis-azobenzene—emission from the Franck-Condon state. Chem Phys Lett 372:216–223

    Article  CAS  Google Scholar 

  94. Chang CW, Lu YC, Wang TT, Diau EWG (2004) Photoisomerization dynamics of azobenzene in solution with S1 excitation: a femtosecond fluorescence anisotropy study. J Am Chem Soc 126:10109–10118

    Article  CAS  Google Scholar 

  95. Carstensen O, Sielk J, Schönborn JB, Granucci G, Hartke B (2010) Unusual photochemical dynamics of a bridged azobenzene derivative. J Chem Phys 133:124305

    Article  CAS  Google Scholar 

  96. Böckmann M, Doltsinis N, Marx D (2010) Unraveling a chemically enhanced photoswitch: bridged azobenzene. Angew Chem Int Ed 19:3382–3384

    Article  CAS  Google Scholar 

  97. Gao AH, Li B, Zhang PY, Han KL (2012) Nonadiabatic ab initio molecular dynamics of photoisomerization in bridged azobenzene. J Chem Phys 137:204305

    Article  CAS  Google Scholar 

  98. Jiang CW, Xie RH, Li FL, Allen RE (2012) Ultrafast cis-to-trans photoisomerization of a bridged azobenzene through nπ* excitation: rotational pathway is not restricted. Chem Phys Lett 521:107–112

    Article  CAS  Google Scholar 

  99. Jiang CW, Xie RH, Li FL, Allen RE (2011) Comparative studies of the trans-cis photoisomerizations of azobenzene and a bridged azobenzene. J Phys Chem A 115:244–249

    Article  CAS  Google Scholar 

  100. Böckmann M, Doltsinis NL, Marx D (2012) Enhanced photoswitching of bridged azobenzene studied by nonadiabatic ab initio simulation. J Chem Phys 137:22A505

    Article  CAS  Google Scholar 

  101. Gao AH, Li B, Zhang PY, Liu JY (2014) Photochemical dynamics simulations for trans-cis photoisomerizations of azobenzene and bridged azobenzene. Comp Theo Chem 1031:13–21

    Article  CAS  Google Scholar 

  102. Carstensen NO (2013) Qm/mm surface-hopping dynamics of a bridged azobenzene derivative. Phys Chem Chem Phys 15:15017–15026

    Article  CAS  Google Scholar 

  103. Cao J, Liu LH, Fang WH, Xie ZZ, Zhang Y (2013) Photo-induced isomerization of ethylene-bridged azobenzene explored by ab initio based non-adiabatic dynamics simulation: a comparative investigation of the isomerization in the gas and solution phases. J Chem Phys 138:134306

    Article  CAS  Google Scholar 

  104. Mostad A, Ottersen T, Rømming C (1971) Refinement of the crystal-structure of cis-azobenzene. Acta Chem Scand 25:3561–3568

    Article  CAS  Google Scholar 

  105. Nägele T, Hoche R, Zinth W, Wachtveitl J (1997) Femtosecond photoisomerization of cis-azobenzene. Chem Phys Lett 272:489–495

    Article  Google Scholar 

  106. Pancur T, Schwalb NK, Renth F, Temps F (2005) Femtosecond fluorescence up-conversion spectroscopy of adenine and adenosine. Chem Phys 313:199–212

    Article  CAS  Google Scholar 

  107. Samanta S, Qin C, Lough AJ, Woolley GA (2012) Bidirectional photocontrol of peptide conformation with a bridged azobenzene derivative. Angew Chem Int Ed 51:6452–6455

    Article  CAS  Google Scholar 

  108. Tellkamp T, Shen J, Okamoto Y, Herges R (2014) Diazocines on molecular platforms. Eur J Org Chem 2014:5456–5461

    Article  CAS  Google Scholar 

  109. Raeker T, Hartke B (2015) Indandiazocines: unidirectional molecular switches. ScienceOpen Research doi:10.14293/S2199-1006.1.SOR-CHEM.ARDTLN.v1

  110. Asano T (1980) Pressure effects on the thermal cis-trans isomerization of 4-dimethylamino-4′-nitroazobenzene. Evidence for a change of mechanism with solvent. J Am Chem Soc 102:1205–1206

    Article  CAS  Google Scholar 

  111. De Boni L, Toro C, Masunov AE, Hernández FE (2008) Untangling the excited states of DR1 in solution: an experimental and theoretical study. J Phys Chem A 112:3886–3890

    Article  CAS  Google Scholar 

  112. Poprawa-Smoluch M, Baggerman J, Zhang H, Maas HPA, De Cola L, Brouwer AM (2006) Photoisomerization of Disperse Red 1 studied with transient absorption spectroscopy and quantum chemical calculations. J Phys Chem A 110:11926–11937

    Article  CAS  Google Scholar 

  113. Hagiri M, Ichinose N, Zhao C, Horiuchi H, Hiratsuka H, Nakayama T (2004) Sub-picosecond time-resolved absorption spectroscopy of a push-pull type p,p′-substituted trans-azobenzene. Chem Phys Lett 391:297–301

    Article  CAS  Google Scholar 

  114. Schmidt B, Sobotta C, Malkmus S, Laimgruber S, Braun M, Zinth W, Gilch P (2004) Femtosecond fluorescence and absorption dynamics of an azobenzene with a strong push-pull substitution. J Phys Chem A 108:4399–4404

    Article  CAS  Google Scholar 

  115. Toro C, Thibert A, De Boni L, Masunov AE, Hernandez FE (2008) Fluorescence emission of Disperse Red 1 in solution at room temperature. J Phys Chem B 112:929–937

    Article  CAS  Google Scholar 

  116. Biswas N, Umapathy S (2001) Study of solvent effects on the molecular structure and the reorganization energies of 4-nitro-4′-dimethylaminoazobenzene using resonance Raman intensities. J Raman Spectrosc 32:471–480

    Article  CAS  Google Scholar 

  117. Biswas N, Umapathy S (2003) Resonance Raman study of the solvent dynamics for ultrafast charge transfer transition in 4-nitro-4′-dimethylamino-azobenzene. J Chem Phys 118:5526–5536

    Article  CAS  Google Scholar 

  118. Hsu CC, Wang YT, Yabushita A, Luo CW, Hsiao YN, Lin SH, Kobayashi T (2011) Environment-dependent ultrafast photoisomerization dynamics in azo dye. J Phys Chem A 115:11508–11514

    Article  CAS  Google Scholar 

  119. Crecca CR, Roitberg AE (2006) Theoretical study of the isomerization mechanism of azobenzene and disubstituted azobenzene derivatives. J Phys Chem A 110:8188–8203

    Article  CAS  Google Scholar 

  120. Wang LX, Wang XG (2007) Ab initio study of photoisomerization mechanisms of push-pull p,p′-disubstituted azobenzene derivatives on S1 excited state. J Mol Struc Theochem 847:1–9

    Article  CAS  Google Scholar 

  121. Bahrenburg J, Röttger K, Siewertsen R, Renth F, Temps F (2012) Sequential photoisomerisation dynamics of the push-pull azobenzene Disperse Red 1. Photochem Photobiol Sci 11:1210–1219

    Article  CAS  Google Scholar 

  122. Wang Y, Carlisle G (2002) Optical properties of Disperse-Red-1-doped nematic liquid crystal. J Mater Sci: Mater El 13:173–178

    CAS  Google Scholar 

  123. Ikeda T, Tsutsumi O (1995) Optical switching and image storage by means of azobenzene liquid-crystal films. Science 268:1873–1875

    Article  CAS  Google Scholar 

  124. Hugel T, Holland NB, Cattani A, Moroder L, Seitz M, Gaub HE (2002) Single-molecule optomechanical cycle. Science 296:1103–1106

    Article  Google Scholar 

  125. Häckel M, Kador L, Kropp D, Schmidt HW (2007) Polymer blends with azobenzene-containing block copolymers as stable rewritable volume holographic media. Adv Mater 19:227–231

    Article  CAS  Google Scholar 

  126. Barrett CJ, Mamiya J, Yager KG, Ikeda T (2007) Photo-mechanical effects in azobenzene-containing soft materials. Soft Matter 3:1249–1261

    Article  CAS  Google Scholar 

  127. Bahrenburg J, Renth F, Temps F, Plamper F, Richtering W (2014) Femtosecond spectroscopy reveals huge differences in the photoisomerisation dynamics between azobenzenes linked to polymers and azobenzenes in solution. Phys Chem Chem Phys 16:11549–11554

    Article  CAS  Google Scholar 

  128. Steffen J (2013) Bachelor’s thesis. University of Kiel

    Google Scholar 

  129. Ribas-Arino J, Marx D (2012) Covalent mechanochemistry: theoretical concepts and computational tools with applications to molecular nanomechanics. Chem Rev 112:5412–5487

    Article  CAS  Google Scholar 

  130. Rivero D, Valentini A, Fernández-González MÁ, Zapata F, Garcia-Iríepa C, Sampedro D, Palmeiro R, Frutos LM (2015) Mechanical forces alter conical intersections topology. J Chem Theory Comput 11:3740–3745

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their deepest gratitude to the present and the former PhD students Shuangqing Wang, Katharina Röttger and Ron Siewertsen for their invaluable contributions. Much of the work reported here was part of J.B.’s Ph.D. thesis. Furthermore, we would like to thank sincerely Walter Richtering and Felix Plamper (RWTH Aachen) for a very fruitful collaboration on AB-functionalised polymer colloids, and our colleagues and collaboration partners Bernd Hartke, Jan Boyke Schönborn and Ole Carstensen for many stimulating discussions and sharing their simulation data. Finally, financial support by the Deutsche Forschungsgemeinschaft through sub-project A1 of the SFB 677 ‘Function by Switching’ is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Falk Renth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Renth, F., Bahrenburg, J., Temps, F. (2017). Ultrafast Photoswitching Dynamics of Azobenzenes with Intra- and Intermolecular Constraints. In: Yokoyama, Y., Nakatani, K. (eds) Photon-Working Switches. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56544-4_12

Download citation

Publish with us

Policies and ethics