Advertisement

Neurological Research in Idiopathic Scoliosis

  • Masafumi MachidaEmail author
Chapter

Abstract

Despite years of research, a neurological etiology for sdolescent idiopathic scoliosis is still being explored. The task is complicated by the difficulty in differentiating a characteristic of scoliosis as a primary etiologic factor or an effect that is secondary to the spinal deformity. Here, we provide an overview of the accumulating data pointing to the involvement of neurological causes in the onset for adolescent idiopathic scoliosis.

Keywords

Idiopathic scoliosis Neuromorphologic studies Neurophysiologic studies 

References

  1. 1.
    Kouwenhoven JW, Castelein RM. The pathogenesis of adolescent idiopathic scoliosis: review of the literature. Spine. 2008;33:2898–908.PubMedCrossRefGoogle Scholar
  2. 2.
    Low TG, Edgard M, Margulies JY, et al. Etiology of idiopathic scoliosis: current trends in research. J Bone Joint Surg. 2000;82A:1157–68.CrossRefGoogle Scholar
  3. 3.
    Machida M, Murai I, Miyashita Y, et al. Pathogenesis of idiopathic scoliosis: experimental study in rats. Spine. 1999;24:1985–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Machida M, Saito M, Dubousset J, et al. Pathological mechanism of idiopathic scoliosis: experimental scoliosis in pinealectomized rats. Eur Spine J. 2005;14:843–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Guerin J. Letter sur le traitement des deviations laterals de l’epine par la section sous-cutanee des muscles de dos et de la colonne vertebrale. Gaz Med Paris. 1839;7:403–4.Google Scholar
  6. 6.
    Adams W. Lectures on the pathology and treatment of lateral and other forms of curvature of the spine. London: Churchill & Sons; 1865.Google Scholar
  7. 7.
    Trontelj JV, Pecak F, Dimitrijevic MR. Segmental neurophysiological mechanisms in scoliosis. J Bone Joint Surg. 1979;61B:310–3.CrossRefGoogle Scholar
  8. 8.
    Spencer GSG, Eccles MJ. Spinal muscle in scoliosis. Part 2. The proportion and size of type I and type II skeletal muscle fibers measured using a computer controlled microscope. J Neurol Sci. 1976;30:143–54.PubMedCrossRefGoogle Scholar
  9. 9.
    Bylund P, Jansson E, Dahlberg E, et al. Muscle fiber types in thoracic erector spinae muscles. Fiber types in idiopathic and other forms of scoliosis. Clin Orthop. 1987;214:222–8.Google Scholar
  10. 10.
    Slager UT, Hsu JD. Morphometry and pathology of the paraspinous muscles in idiopathic scoliosis. Dev Med Child Neurol. 1986;28:749–56.PubMedCrossRefGoogle Scholar
  11. 11.
    Yarom R, Robin GC, Gorodetsky R. X-Ray fluorescence analysis of muscle in scoliosis. Spine. 1978;3:142–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Yarom R, Robin GC. Studies on spinal and peripheral muscles from patients with scoliosis. Spine. 1979;4:12–21.PubMedCrossRefGoogle Scholar
  13. 13.
    Riddle HVF, Roaf R. Muscle imbalance in the causation of scoliosis. Lancet. 1955;1:1245–7.CrossRefGoogle Scholar
  14. 14.
    Henssge J. Are signs of denervation of muscles of the spine primary or secondary findings in cases of scoliosis? J Bone Joint Surg. 1968;50B:882.Google Scholar
  15. 15.
    Badger VM. Correlation studies on muscle in scoliosis: histochemistry, EMG, EM and quantitative enzyme estimation. J Bone Joint Surg. 1969;51A:204.Google Scholar
  16. 16.
    Walf E, Robin GC, Yarom R, et al. Myopathy of deltoid muscle in patients with idiopathic scoliosis. Electromyogr Clin Neurophysiol. 1982;22:357–69.Google Scholar
  17. 17.
    Trontelj JV. The motor unit in idiopathic scoliosis. Acta Orth Jugosl. 1984;15:7–14.Google Scholar
  18. 18.
    Fernandez JM. Single fiber EMG in juvenile idiopathic scoliosis. Muscle Nerve. 1988;11:297–300.PubMedCrossRefGoogle Scholar
  19. 19.
    Valentino B, Maccauro L, Mango G. Electromyography in the investigation and early diagnosis of scoliosis. Anat Clin. 1985;7:55–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Yarom R, Robin GC. Muscle pathology in idiopathic scoliosis. Isr J Med Sci. 1979;15:917–24.PubMedGoogle Scholar
  21. 21.
    Gibson JN, McMaster MJ, Scrimgeour CM, et al. Rates of muscle protein synthesis in paraspinal muscle: lateral disparity in children with idiopathic scoliosis. Clin Sci. 1988;75:79–83.PubMedCrossRefGoogle Scholar
  22. 22.
    Ebashi S, Endo M. Calcium and muscle contraction. Prog Biophys Mol Biol. 1968;18:123–83.PubMedCrossRefGoogle Scholar
  23. 23.
    Cohen DS, Solomons CS, Lowe TG. Altered platelet calmodulin activity in AIS. Orthop Trans. 1985;9:106.Google Scholar
  24. 24.
    Kindsfater K, Lowe T, Lawellin D, et al. Levels of platelet calmodulin for the prediction of progression and severity of adolescent idiopathic scoliosis. J Bone Joint Surg. 1994;76A:1186–92.CrossRefGoogle Scholar
  25. 25.
    Acaroglu RE, Akel I, Alanay A, et al. Comparison of the melatonin and calmodulin in paraventral muscle and platelets of patients with or without adolescent idiopathic scoliosis. Spine J. 2009;34:E659–63.CrossRefGoogle Scholar
  26. 26.
    Lowe TG, Lawellin D, Smith D, et al. Platelet calmodulin levels in adolescent idiopathic scoliosis: do the levels correlate with curve progression and severity? Spine. 2002;27:768–75.PubMedCrossRefGoogle Scholar
  27. 27.
    Lowe TG, Buewell RG, Dangerfield PH. Platelet calmodulin levels in adolescent idiopathic scoliosis (AIS): can they predict curve progression and severity? Summary of an electronic focus group debate of the IBSE. Eur Spine J. 2004;13:257–65.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Benitex-King G, Anton-Tay F. Calmodulin mediates melatonin cytoskeletal effects. Experientia. 1993;49:635–41.CrossRefGoogle Scholar
  29. 29.
    Brezeniski AA. melatonin in humans. New Engl J Med. 1997;336:186–9.CrossRefGoogle Scholar
  30. 30.
    Thillard MJ. Deformation de la colonne vertebrale consecutives a l’epiphysectomie chez le poussin. Extrait Compt Rendus Assoc Anat. 1959;XLVI:22–6.Google Scholar
  31. 31.
    Dubousset J, Queneau P, Thillard MJ. Experimental scoliosis induced by pineal and dicephalic lesions in young chickens: its relation with clinical findings in idiopathic scoliosis. Orthop Trans. 1983;7:7.Google Scholar
  32. 32.
    Machida M, Dubousset J, Imamura Y, et al. An experimental study in chickens for the pathogenesis of idiopathic scoliosis. Spine. 1993;18:1609–15.PubMedCrossRefGoogle Scholar
  33. 33.
    Machida M, Dubousset J, Imamura Y, et al. Role of melatonin deficiency in the development of scoliosis in pinealectomised chickens. J Bone Joint Surg. 1995;77B:134–8.CrossRefGoogle Scholar
  34. 34.
    Dubousset J, Machida M. Possible role of the pineal gland in the pathogenesis of idiopathic scoliosis. Experimental and clinical studies. Bull Acad Natl Med. 2001;185:593–602.PubMedGoogle Scholar
  35. 35.
    Machida M, Dubousset J, Sato T, et al. Pathological mechanism of experimental scoliosis in pinealectomized chickens. Spine. 2001;26:E385–91.PubMedCrossRefGoogle Scholar
  36. 36.
    Machida M, Dubousset J, Yamada T, et al. Experimental scoliosis in melatonin-deficient C57BL/6J mice without pinealectomy. J Pineal Res. 2006;41:1–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Cheung KM, Wang T, Poon AM, et al. The effect of pinealectomy in scoliosis development in young nonhuman primates. Spine. 2005;30:2009–13.PubMedCrossRefGoogle Scholar
  38. 38.
    Machida M, Dubousset J, Miyake A, et al. The possible pathogenesis in adolescent idiopathic scoliosis based on experimental model of melatonin-deficient C57BL/65J mice. Presented at 51st annual meeting of Scoliosis Research Society in Prague, Sep 2016. Prague: Scoliosis Research Society; 2016. p. 22.Google Scholar
  39. 39.
    Machida M, Dubousset J, Imamura Y, et al. Melatonin. A possible role in pathogenesis of adolescent idiopathic scoliosis. Spine. 1996;21:1147–52.PubMedCrossRefGoogle Scholar
  40. 40.
    Machida M. Cause of idiopathic scoliosis. Spine. 1999;24:2576–83.PubMedCrossRefGoogle Scholar
  41. 41.
    Machida M, Dubousset J, Yamada T, et al. Serum melatonin levels in adolescent idiopathic scoliosis prediction and prevention for curve progression – a prospective study. J Pineal Res. 2009;46:344–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Morcuende JA, Minhas R, Dolan L, et al. Allelic variants of human melatonin 1A receptor in patients with familial adolescent idiopathic scoliosis. Spine. 2003;28:2025–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Qiu XS, Tang NL, Yeung HY, et al. The role of melatonin receptor 1B gene (MTNR1B) in adolescent idiopathic scoliosis – a genetic association study. Stud Health Technol Inform. 2006;123:3–8.PubMedGoogle Scholar
  44. 44.
    Moreau A, Wang DS, Forget S, et al. Melatonin signaling dysfunction in adolescent idiopathic scoliosis. Spine. 2004;29:1772–81.PubMedCrossRefGoogle Scholar
  45. 45.
    Akoume MY, Azeddine B, Turgeon I, et al. Cell-based screening test for idiopathic scoliosis using cellular dielectric spectroscopy. Spine. 2010;35:E601–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Wu J, Qiu Y, Zhang L, et al. Association of estrogen receptor gene polymorphisms with susceptibility to adolescent idiopathic scoliosis. Spine. 2006;31:1131–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Yamada K, Ikata T, Yamamoto H, et al. Equilibrium function in scoliosis and active corrective plaster jacket for the treatment. Tokushima J Med. 1969;16:1–7.Google Scholar
  48. 48.
    Tezuka A. Development of scoliosis in cases with congenital organic abnormalities of the brain stem. A report of seven cases. Tokushima J Exp Med. 1971;18:49–62.PubMedGoogle Scholar
  49. 49.
    Yamamoto H, Yamada K. Equilibrium approach to scoliotic posture. Agressologie. 1976;17:61–6.PubMedGoogle Scholar
  50. 50.
    Kawata S. Experimental scoliosis produced by stereotaxic destruction of the posterior part of the hypothalamus in bipedal rats. Shikoku Acta Med. 1976;32:125–31.Google Scholar
  51. 51.
    Yamada K, Yamamoto H. Neuromuscular and neurohormonal approaches to the etiology of idiopathic scoliosis. Orth Trans. 1978;2:277.Google Scholar
  52. 52.
    Shi L, Wang D, Chu WCW, et al. Volume-based morphometry of brain MR images in adolescent idiopathic scoliosis and healthy control subjects. Am J Neuroradiol. 2009;30:1302–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Rousie DL, Hache JC, Pellerin P, et al. Oculomotor, postural, and perceptual asymmetries and asymmetries in vestibular organ anatomy. Ann N Y Acad Sci. 1999;871:439–46.PubMedCrossRefGoogle Scholar
  54. 54.
    Chu WC, Shi L, Wang D, et al. Variations of semicircular canals orientation and left-right asymmetry in adolescent idiopathic scoliosis (AIS) comparing with normal controls: MR morphometry study using advanced image computation techniques. Stud Health Technol Inform. 2008;140:333.Google Scholar
  55. 55.
    Shi L, Wang D, Chu WC, et al. Automatic MRI segmentation and morphoanatomy analysis of the vestibular system in adolescent idiopathic scoliosis. NeuroImage. 2011;54:S180–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Guo X, Chau W, Hui-Chan CWY, et al. Balance control in adolescents with idiopathic scoliosis and disturbed somatosensory function. Spine. 2006;31:E437–40.PubMedCrossRefGoogle Scholar
  57. 57.
    Lao ML, Chow DH, Guo X, et al. Impaired dynamic balance control in adolescents with idiopathic scoliosis and abnormal somatosensory evoked potentials. J Pediatr Orthop. 2006;28:846–9.CrossRefGoogle Scholar
  58. 58.
    Beaulieu M, Toulotte C, Gatto L, et al. Postural imbalance in nontreated adolescent idiopathic scoliosis at different periods of progression. Eur Spine J. 2009;18:38–44.PubMedCrossRefGoogle Scholar
  59. 59.
    Simoneau M, Richer N, Mercier P, et al. Sensory deprivation and balance control in idiopathic scoliosis adolescent. Exp Brain Res. 2006;170:576–82.PubMedCrossRefGoogle Scholar
  60. 60.
    Barrack RL, Wyatt MP, Whitecloud TSIII, et al. Vibratory hypersensitivity in idiopathic scoliosis. J Pediatr Orthop. 1988;8:389–95.PubMedCrossRefGoogle Scholar
  61. 61.
    Wiener-Vacher SR, Mazda K. Asymmetric otolith vestibule-ocular responses in children with idiopathic scoliosis. J Pediatr. 1998;132:1028–32.PubMedCrossRefGoogle Scholar
  62. 62.
    Jen J, Coulin CJ, Bosley TM, et al. Familial horizontal gaze palsy with progressive scoliosis maps to chromosome 11q23-25. Neurology. 2002;59:432–5.PubMedCrossRefGoogle Scholar
  63. 63.
    Cheung J, Veldhuizen AG, Jp H, et al. Geometric and myographic assessments in the evaluation of curve progression in idiopathic scoliosis. Spine. 2006;31:322–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Machida M, Dubousset J, Imamura Y, et al. Pathogenesis of idiopathic scoliosis: SEPs in chickens with experimentally induced scoliosis and in patients with idiopathic scoliosis. J Pediatr Orthop. 1994;14:329–35.PubMedCrossRefGoogle Scholar
  65. 65.
    Cheng JC, Guo X, Sher AH, et al. Correlation between curve severity, somatosensory evoked potentials, and magnetic resonance imaging in adolescents idiopathic scoliosis. Spine. 1999;23:332–7.CrossRefGoogle Scholar
  66. 66.
    Hausmann ON, Boni T, Pfirrmann CW, et al. Preoperative radiological and electrophysiological evaluation in 100 adolescent idiopathic scoliosis patients. Eur Spine J. 2003;12:501–6.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Lao ML, Chow DH, Guo X, et al. Impaired dynamic balance control in adolescents with idiopathic scoliosis and abnormal somatosensory evoked potentials. J Pediatr Orthop. 2008;28:846–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Peterson I, Sahlstrand T, Sellden U. EEG investigation of patients with adolescent idiopathic scoliosis. Acta Orth Scand. 1979;50:283–93.CrossRefGoogle Scholar
  69. 69.
    McInnes E, Hill DL, Raso VJ, et al. Vibratory response in adolescents who have idiopathic scoliosis. J Bone Joint Surg. 1991;73A:1208–12.CrossRefGoogle Scholar
  70. 70.
    Kimiskidis VK, Potoupnis M, Papagiannopoulos SK, et al. Idiopathic scoliosis: a transcranial magnetic stimulation study. J Musculoskelet Neuronal Interact. 2007;7:155–60.PubMedGoogle Scholar
  71. 71.
    Mihailia D, Calancie B. Is corticospinal tract organization different in idiopathic scoliosis? Stud Health Technol Inform. 2008;140:350.Google Scholar
  72. 72.
    Domenech J, Torms JM, Barrios C, et al. Motor cortical hyperexcitability in idiopathic scoliosis: could focal dystonia be a subclinical etiological factor? Eur Spine J. 2010;19:223–30.PubMedCrossRefGoogle Scholar
  73. 73.
    Chockalingam N, Dangerfield PH, Rahmatalla A, et al. Assessment of ground reaction force during scoliotic gait. Eur Spine J. 2004;13:750–4.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Chow DH, Kwok ML, Cheng JC, et al. The effect of backpack weight on the standing posture and balance of schoolgirls with adolescent idiopathic scoliosis and normal controls. Gait Posture. 2006;24:173–81.PubMedCrossRefGoogle Scholar
  75. 75.
    Bruyneel AV, Chavet P, Bollini G, et al. Dynamical asymmetries in idiopathic scoliosis during forward and lateral initiation step. Eur Spine J. 2009;18:188–95.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Mahaudens P, Banse X, Mousny M, et al. Gait in adolescent idiopathic scoliosis: kinematic electromyographic analysis. Eur Spine J. 2009;18:512–21.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Liszka O. Spinal cord mechanisms leading to scoliosis in animal experiments. Acta Med Pol. 1961;2:45–63.PubMedGoogle Scholar
  78. 78.
    MacEwen GD. Experimental scoliosis. In: Zorab PA, editor. Proceedings of the 2nd symposium on scoliosis: causation. Livigstone: Edinburgh; 1968. p. 14–8.Google Scholar
  79. 79.
    Alexander MA, Bunch WH, Ebbesson SOE. Can experimental dorsal rhizotomy produce scoliosis? J Bone Joint Surg. 1972;54A:1509–13.CrossRefGoogle Scholar
  80. 80.
    Pincott JR, Davies JS, Taffs LF. Scoliosis caused by section of dorsal spinal nerve roots. J Bone Joint Surg. 1984;66B:27–9.CrossRefGoogle Scholar
  81. 81.
    Suk SI, Song HS, Lee CK. Scoliosis induced anterior and posterior rhizotomy. Spine. 1989;14:692–7.PubMedCrossRefGoogle Scholar
  82. 82.
    Pincott JR, Taffs LF. Experimental scoliosis in primates. A neurological cause. J Bone Joint Surg. 1982;64B:503–7.CrossRefGoogle Scholar
  83. 83.
    deSalis J, Beguiristain JL, Canadell J. The production of experimental scoliosis by selective arterial ablation. Int Orthop. 1980;3:311–5.CrossRefGoogle Scholar
  84. 84.
    Barrios C, Tunon MT, deSalis JA, et al. Scoliosis induced by medullary damage: an experimental study in rabbits. Spine. 1987;12:433–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Dubousset J, Bancel PH, Missenard G. Spinal deformities secondary to the treatment of neuroblastomas in children. Presented at 15th annual meeting of scoliosis research society in Chicago, Sep 1980. Prague: Scoliosis Research Society; 1980. p. 17.Google Scholar
  86. 86.
    Cheng JC, Guo X, Shea AH. Posterior tibial nerve somatosensory cortical evoked potentials in idiopathic scoliosis. Spine. 1998;23:332–7.PubMedCrossRefGoogle Scholar
  87. 87.
    Whitecloud TS III, Brinker MR, Barrack RL, et al. Vibratory response in congenital scoliosis. J Pediatr Orthop. 1989;9:422–6.PubMedCrossRefGoogle Scholar
  88. 88.
    Isu T, Chono Y, Iwasaki Y, et al. Scoliosis associated with syringomyelia presenting in children. Childs Nerv Syst. 1992;8:97–100.PubMedCrossRefGoogle Scholar
  89. 89.
    Arai S, Ohtsuka Y, Moriya H, et al. Scoliosis associated with syringomyelia. Spine. 1993;18:1591–2.PubMedCrossRefGoogle Scholar
  90. 90.
    Gupta P, Lenke LG, Bridwell KH. Incidence of neural axis abnormalities in infantile and juvenile patients with spinal deformity. Is a magnetic resonance image screening necessary? Spine. 1998;23:206–10.PubMedCrossRefGoogle Scholar
  91. 91.
    Singhal R, Perry DC, Prasad S, et al. The use of routine preoperative magnetic resonance imaging in identifying intraspinal anomalies in patients with idiopathic scoliosis: a 10-year review. Eur Spine J. 2013;22:355–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Roth M. Idiopathic scoliosis caused by a short spinal cord. Acta Radiol Diagn (Stockh). 1968;7:257–2571.CrossRefGoogle Scholar
  93. 93.
    Porter RW. Can a short spinal cord produce scoliosis? Eur Spine J. 2001;10:2–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Porter RW. Idiopathic scoliosis: the relation between the vertebral canal and the vertebral bodies. Spine. 2000;25:1360–6.PubMedCrossRefGoogle Scholar
  95. 95.
    Porter RW. The pathogenesis of idiopathic scoliosis: uncoupled neuro-osseous growth? Eur Spine J. 2001;10:473–81.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Chu WC, Lam WW, Chan YL, et al. Relative shortening and functional tethering of spinal cord in adolescent idiopathic scoliosis?: study with multiplanar reformat magnetic resonance imaging and somatosensory evoked potential. Spine. 2001;10:482–7.CrossRefGoogle Scholar
  97. 97.
    Yamamoto H. A postural disequilibrium as an etiological factor in idiopathic scoliosis. In: Jacobs RR, editor. Pathogenesis of idiopathic scoliosis: proceeding of an international conference. Prague: Scoliosis Research Society; 1983.Google Scholar
  98. 98.
    Magnus R. Korperstellung. Berlin: Springer; 1925. (cited by Stilwell DL, 1962)Google Scholar
  99. 99.
    Horn E, Rayer B. Compensation of vestibular lesions in relation to development. Naturwissenscaften. 1978;65:441.CrossRefGoogle Scholar
  100. 100.
    Rayer B, Horn E. The development of the static vestibule-ocular reflex in the Southern Clawed Toad, Xenopus laevis. III Chronic hemilabyrinthectomized tadpoles. J Com Physiol A. 1986;159:887–95.CrossRefGoogle Scholar
  101. 101.
    Lambert FM, Malinvaud D, Glaunes J, et al. Vestibular asymmetry as the cause of idiopathic scoliosis: a possible answer from Xenopus. J Neurosci. 2009;29:12477–83.PubMedCrossRefGoogle Scholar
  102. 102.
    Nachemson A, Sahlstrand F. Etiologic factors in adolescent idiopathic scoliosis. Spine. 1977;3:176–82.CrossRefGoogle Scholar
  103. 103.
    Yamada K, Yamamoto H, Nakagawa Y, et al. Etiology of idiopathic scoliosis. Clin Orthop. 1984;184:50–7.Google Scholar
  104. 104.
    Sahlstrand T, Petrusson B. A study of labyrinthine function in patients with adolescent idiopathic scoliosis. (i) An electronystagmographic study. Acta Orth Scan. 1979;50:759–69.CrossRefGoogle Scholar
  105. 105.
    Sahlstrand T, Ortengren R, Nachemson A. Postural equilibrium in idiopathic scoliosis. Acta Orth Scand. 1978;49:354–65.CrossRefGoogle Scholar
  106. 106.
    Gregoric M, Pecak F, Trontelj JV, et al. Postural control in scoliosis: a statokinesimetric study in patients with scoliosis due to neuromuscular disorders and in patients with idiopathic scoliosis. Acta Orthop Scand. 1981;52:59–63.PubMedCrossRefGoogle Scholar
  107. 107.
    Sahlstrand T, Petrusson B. Postural effects on nystagmus response during caloric stimulation in patients with adolescent idiopathic scoliosis. (ii) an electronystagmographic study. Acta Orth Scan. 1979;50:771–5.CrossRefGoogle Scholar
  108. 108.
    Herman R, MacEwen GD. Idiopathic scoliosis: a visio-vesticular disorder of the central nervous system. In: Zorab PA, editor. Scoliosis. Preceeding of the sixth symposium. London: Academic; 1978. p. 61–9.Google Scholar
  109. 109.
    Hinoki M. Measurement of the slow phase of optokinetic nystagmus in patients with scoliosis. Agressologie. 1979;2D–C:223–4.Google Scholar
  110. 110.
    Herman R, Mixon J, Fisher A, et al. Idiopathic scoliosis and the central nervous system: a motor control problem. Spine. 1985;10:1–14.PubMedCrossRefGoogle Scholar
  111. 111.
    Hamanishi C, Tanaka S, Kasahara Y, et al. Progressive scoliosis associated with lateral gaze palsy. Spine. 1993;18:2545–8.PubMedCrossRefGoogle Scholar
  112. 112.
    Herman R, Maulucci R, Stuyck J, et al. Vestibular functioning in idiopathic scoliosis. Orth Trans. 1979;3:218–9.Google Scholar
  113. 113.
    O’Beirne J, Goldberg C, Dowling E, et al. Equilibrium dysfunction in scoliosis – cause or effect? J Spinal Dis. 1989;2:184–9.Google Scholar
  114. 114.
    Byl NH, Hollands S, Jurek A, et al. Postural imbalance and vibratory sensitivity in patients with idiopathic scoliosis: implications for treatment. J Orthop Sports Phys Ther. 1997;26:60–8.PubMedCrossRefGoogle Scholar
  115. 115.
    Mirovsky Y, Blankstei A, Shlamkovitch N. Postural control in patients with severe idiopathic scoliosis: a prospective study. J Pediatr Orthop. 2006;15B:168–71.CrossRefGoogle Scholar
  116. 116.
    Simoneuau M, Lamothe V, Hutin T, et al. Evidence for cognitive vestibular integration impairment in idiopathic scoliosis patients. BMC Neurosci. 2009;10:102.CrossRefGoogle Scholar
  117. 117.
    Ghez C, Farn S. The cerebellum. In: Kandel ER, Schwartz JH, editors. Principle of neural science. 2nd ed. New York, NY: Elsevier; 1985. p. 502–22.Google Scholar
  118. 118.
    Barmack NH. Central vestibular system: vestibular nuclei and posterior cerebellum. Brain Res Bull. 2003;60:511–41.PubMedCrossRefGoogle Scholar
  119. 119.
    Shi L, Wang D, Hui SCN, et al. Volumetric changes in cerebellar regions in adolescent idiopathic scoliosis compared with healthy controls. Spine J. 2013;Google Scholar
  120. 120.
    Liu T, Chu WC Yeung G, et al. MR analysis of regional brain volume in adolescent idiopathic scoliosis: neurological manifestation of a systemic disease. J Magn Reson Imaging. 2008;27:732–6.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Wang D, Shi L, Chu WC, et al. Abnormal cerebral cortical thinning pattern in adolescent idiopathic scoliosis. NeuroImage. 2012;59:935–42.PubMedCrossRefGoogle Scholar
  122. 122.
    Wang D, Shi L, Chu WCW, et al. A comparison of morphometric techniques for studying the shape of corpus callosum in adolescent idiopathic scoliosis. NeuroImage. 2009;45:738–48.PubMedCrossRefGoogle Scholar
  123. 123.
    Lee JS, Kim S-J, Suh KT, et al. Adolescent idiopathic scoliosis may not be associated with brain anomalies. Acta Radiol. 2009;50:941–6.PubMedCrossRefGoogle Scholar
  124. 124.
    Joly O, Rousie D, Jissendi P, et al. A new approach to corpus callosum anomalies in idiopathic scoliosis using diffusion tensor magnetic resonance imaging. Eur Spine J. 2014;22:2643–9.CrossRefGoogle Scholar
  125. 125.
    Lukeschitsch G, Meznik F, Feldner-Bustin H. Zerebrale dysfunction bei patenten mit idiopatische skoliose. Ztsch Orth. 1980;118:372–5.CrossRefGoogle Scholar
  126. 126.
    Leonard MA. An investigation into the EEG findings in patients with idiopathic scoliosis. J Bone Joint Surg. 1981;63B:632.Google Scholar
  127. 127.
    Dretakins EK, Parskevaidis H, Zarkadoulas V, et al. Electroencephalographic study of school children with adolescent idiopathic scoliosis. Spine. 1988;13:143–5.CrossRefGoogle Scholar
  128. 128.
    Robb JE, Conner AN, Stephenson JBT. Normal electroencephalograms in idiopathic scoliosis. Act Orth Scand. 1985;57:220–1.CrossRefGoogle Scholar
  129. 129.
    Schneider E, Niethard FU, Schiek H, et al. Wie idioppathisch ist die idiopathische Skoliose? Ergebnisse neurologischer Untersuchungen mit somatosensorisch evozierten Potentialen bei Kindern und Jugendlichen. Z Orthop. 1991;129:355–61.PubMedCrossRefGoogle Scholar
  130. 130.
    Chau WW, Guo X, Fu LL, et al. Abnormal sensory evoked potential (SSEP) in adolescents with idiopathic scoliosis – the site of abnormality. In: Sawatzky BJ, editor. International Research Society of spinal deformities symposium. Vancouver, BC: International Research Society; 2004. p. 279–81.Google Scholar
  131. 131.
    Maguire J, Madigan R, Wallance S, et al. Intraoperative long-latency reflex activity in adolescent idiopathic scoliosis demonstrates abnormal central processing. A possible cause of adolescent idiopathic scoliosis. Spine. 1993;18:1621–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2018

Authors and Affiliations

  1. 1.Department of Spine and Spinal Cord SurgeryYokohama Brain and Spine CenterYokohamaJapan

Personalised recommendations