Skip to main content

Bone Metabolism in AIS

  • Chapter
  • First Online:
Pathogenesis of Idiopathic Scoliosis

Abstract

Adolescent idiopathic scoliosis (AIS) occurs in children during their pubertal growth spurt. Rapid skeletal growth and abnormal anthropometric parameters are associated with the development and progression of scoliotic curves, with the curves stabilized when skeletal maturity is reached. Systemic osteopenia affecting multiple skeletal sites, defined as bone mineral density (BMD) of Z-score ≤ −1 with reference to the age and ethnic-matched population, was found by dual-energy X-ray absorptiometry (DXA) in over 30% of the AIS patients. The osteopenia could persist into adulthood, thus predisposing the AIS patients to osteoporosis and other related complications in later life. Osteopenia in AIS was shown to be an important prognostic factor for curve progression. Recent studies with advanced high-resolution peripheral quantitative computed tomography (HR-pQCT) revealed significant alterations in systemic bone geometry, micro-architecture, volumetric BMD, and mechanical bone strength (finite element analysis) in addition to osteopenia in AIS. Serological and cellular functional studies supported the presence of abnormal bone formation and resorption that might have contributed to the abnormal bone qualities and bone strength which could be linked to the etiopathogenesis of AIS. Physical activities, calcium and vitamin D intake, and genetics are important factors affecting bone mass in AIS. Recent RCT studies on whole-body vibration therapy and supplement therapy with calcium and vitamin D have shown to improve low bone mass in AIS significantly. A better understanding on the possible association between bone qualities and curve progression will shed light on future development of novel prognostic biomarkers and therapeutic strategies in AIS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Riggs BL, Khosla S, Melton LJ III. The assembly of the adult skeleton during growth and maturation: implications for senile osteoporosis. J Clin Invest. 1999;104(6):671–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Theintz G, Buchs B, Rizzoli R, Slosman D, Clavien H, Sizonenko PC, et al. Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab. 1992;75(4):1060–5.

    CAS  PubMed  Google Scholar 

  3. Bailey DA, Wedge JH, McCulloch RG, Martin AD, Bernhardson SC. Epidemiology of fractures of the distal end of the radius in children as associated with growth. J Bone Joint Surg Am. 1989;71(8):1225–31.

    Article  CAS  PubMed  Google Scholar 

  4. Wang Q, Alen M, Nicholson P, Lyytikainen A, Suuriniemi M, Helkala E, et al. Growth patterns at distal radius and tibial shaft in pubertal girls: a 2-year longitudinal study. J Bone Miner Res. 2005;20(6):954–61.

    Article  PubMed  Google Scholar 

  5. Wang Q, Wang XF, Iuliano-Burns S, Ghasem-Zadeh A, Zebaze R, Seeman E. Rapid growth produces transient cortical weakness: a risk factor for metaphyseal fractures during puberty. J Bone Miner Res. 2010;25(7):1521–6.

    Article  PubMed  Google Scholar 

  6. Weaver CM. Adolescence: the period of dramatic bone growth. Endocrine. 2002;17(1):43–8.

    Article  CAS  PubMed  Google Scholar 

  7. Nishiyama KK, Macdonald HM, Moore SA, Fung T, Boyd SK, McKay HA. Cortical porosity is higher in boys compared with girls at the distal radius and distal tibia during pubertal growth: an HR-pQCT study. J Bone Miner Res. 2012;27(2):273–82.

    Article  PubMed  Google Scholar 

  8. Hauge EM, Qvesel D, Eriksen EF, Mosekilde L, Melsen F. Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers. J Bone Miner Res. 2001;16(9):1575–82.

    Article  CAS  PubMed  Google Scholar 

  9. Komori T. Regulation of osteoblast differentiation by Runx2. Adv Exp Med Biol. 2010;658:43–9.

    Article  CAS  PubMed  Google Scholar 

  10. Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys. 2008;473(2):139–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Boyle WJ, Riggs BL. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res. 2000;15(1):2–12.

    Article  CAS  PubMed  Google Scholar 

  12. Bellido T. Osteocyte-driven bone remodeling. Calcif Tissue Int. 2014;94(1):25–34.

    Article  CAS  PubMed  Google Scholar 

  13. Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, et al. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem. 2005;280(20):19883–7.

    Article  CAS  PubMed  Google Scholar 

  14. Weiner S, Wagner HD. The material bone: structure mechanical function relations. Annu Rev Mater Sci. 1998;28:271–98.

    Article  CAS  Google Scholar 

  15. Zhang Z, Zhang YW, Gao H. On optimal hierarchy of load-bearing biological materials. Proc Biol Sci. 2011;278(1705):519–25.

    Article  PubMed  Google Scholar 

  16. Olszta MJ, Cheng XG, Jee SS, Kumar R, Kim YY, Kaufman MJ, et al. Bone structure and formation: a new perspective. Mat Sci Eng R. 2007;58(3–5):77–116.

    Article  CAS  Google Scholar 

  17. Addadi L, Weiner S. Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc Natl Acad Sci U S A. 1985;82(12):4110–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lonstein JE, Carlson JM. The prediction of curve progression in untreated idiopathic scoliosis during growth. J Bone Joint Surg Ser A. 1984;66(7):1061–71.

    Article  CAS  Google Scholar 

  19. Shohat M, Shohat T, Nitzan M, Mimouni M, Kedem R, Danon YL. Growth and ethnicity in scoliosis. Acta Orthop Scand. 1988;59(3):310–3.

    Article  CAS  PubMed  Google Scholar 

  20. Cheung CSK, Lee WTK, Tse YK, Tang SP, Lee KM, Guo X, et al. Abnormal peri-pubertal anthropometric measurements and growth pattern in adolescent idiopathic scoliosis: a study of 598 patients. Spine. 2003;28(18):2152–7.

    Article  Google Scholar 

  21. Goldberg CJ, Dowling FE, Fogarty EE. Adolescent idiopathic scoliosis – early menarche, normal growth. Spine. 1993;18(5):529–35.

    Article  CAS  PubMed  Google Scholar 

  22. Cheung CSK, Lee WTK, Tse YK, Guo X, Qin L, Cheng JCY. Generalized osteopenia in adolescent idiopathic scoliosis – association with abnormal pubertal growth, bone turnover, and calcium intake? Spine. 2006;31(3):330–8.

    Article  PubMed  Google Scholar 

  23. Ylikoski M. Height of girls with adolescent idiopathic scoliosis. Eur Spine J. 2003;12(3):288–91.

    PubMed  PubMed Central  Google Scholar 

  24. Cheng JCY, Leung SSF, Lau J. Anthropometric measurements and body proportions among Chinese children. Clin Orthop Relat Res. 1996;323:22–30.

    Article  Google Scholar 

  25. Burwell RG, Freeman BJ, Dangerfield PH, Aujla RK, Cole AA, Kirby AS, et al. Left-right upper arm length asymmetry associated with apical vertebral rotation in subjects with thoracic scoliosis: anomaly of bilateral symmetry affecting vertebral, costal and upper arm physes? Stud Health Technol Inform. 2006;123:66–71.

    CAS  PubMed  Google Scholar 

  26. Burwell RG, Aujla RK, Grevitt MP, Randell TL, Dangerfield PH, Cole AA, et al. Upper arm length model suggests transient bilateral asymmetry is associated with right thoracic adolescent idiopathic scoliosis (RT-AIS) with implications for pathogenesis and estimation of linear skeletal overgrowth. Stud Health Technol Inform. 2012;176:188–94.

    PubMed  Google Scholar 

  27. Burwell RG, Aujla RK, Freeman BJ, Dangerfield PH, Cole AA, Kirby AS, et al. Patterns of extra-spinal left-right skeletal asymmetries in adolescent girls with lower spine scoliosis: relative lengthening of the ilium on the curve concavity & of right lower limb segments. Stud Health Technol Inform. 2006;123:57–65.

    CAS  PubMed  Google Scholar 

  28. Schwender JD, Denis F. Coronal plane imbalance in adolescent idiopathic scoliosis with left lumbar curves exceeding 40°: the role of the lumbosacral hemicurve. Spine. 2000;25(18):2358–63.

    Article  CAS  PubMed  Google Scholar 

  29. Goldberg CJ, Fogarty EE, Moore DP, Dowling FE. Scoliosis and developmental theory: adolescent idiopathic scoliosis. Spine. 1997;22(19):2228–38.

    Article  CAS  PubMed  Google Scholar 

  30. Burwell RG, Aujla RK, Grevitt MP, Dangerfield PH, Moulton A, Randell TL, et al. Pathogenesis of adolescent idiopathic scoliosis in girls – a double neuro-osseous theory involving disharmony between two nervous systems, somatic and autonomic expressed in the spine and trunk: possible dependency on sympathetic nervous system and hormones with implications for medical therapy. Scoliosis. 2009;4:24.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Weinstein SL. Natural history. Spine (Phila Pa 1976). 1999;24(24):2592–600.

    Article  CAS  Google Scholar 

  32. Grivas TB, Vasiliadis E, Mouzakis V, Mihas C, Koufopoulos G. Association between adolescent idiopathic scoliosis prevalence and age at menarche in different geographic latitudes. Scoliosis. 2006;1(1):9.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lee WTK, Cheung CSK, Tse YK, Chau WW, Qin L, Cheng JCY. Persistent osteopenia in adolescent idiopathic scoliosis (AIS) – factors predisposing to generalized osteopenia, a cross-sectional and longitudinal investigation. Int Congr Ser. 2007;1297:25–31.

    Article  CAS  Google Scholar 

  34. Mao SH, Jiang J, Sun X, Zhao Q, Qian BP, Liu Z, et al. Timing of menarche in Chinese girls with and without adolescent idiopathic scoliosis: current results and review of the literature. Eur Spine J. 2011;20(2):260–5.

    Article  PubMed  Google Scholar 

  35. Grivas TB, Samelis P, Pappa AS, Stavlas P, Polyzois D. Menarche in scoliotic and nonscoliotic Mediterranean girls. Is there any relation between menarche and laterality of scoliotic curves? Stud Health Technol Inform. 2002;88:30–6.

    PubMed  Google Scholar 

  36. Ramirez M, Martinez-Llorens J, Sanchez JF, Bago J, Molina A, Gea J, et al. Body composition in adolescent idiopathic scoliosis. Eur Spine J. 2013;22(2):324–9.

    Article  PubMed  Google Scholar 

  37. Barrios C, Cortes S, Perez-Encinas C, Escriva MD, Benet I, Burgos J, et al. Anthropometry and body composition profile of girls with nonsurgically treated adolescent idiopathic scoliosis. Spine. 2011;36(18):1470–7.

    Article  PubMed  Google Scholar 

  38. Tam EM, Liu Z, Lam TP, Ting T, Cheung G, Ng BK, et al. Lower muscle mass and body fat in adolescent idiopathic scoliosis are associated with abnormal leptin bioavailability. Spine (Phila Pa 1976). 2016;41(11):940–6.

    Article  Google Scholar 

  39. Clark EM, Taylor HJ, Harding I, Hutchinson J, Nelson I, Deanfield JE, et al. Association between components of body composition and scoliosis: a prospective cohort study reporting differences identifiable before the onset of scoliosis. J Bone Miner Res. 2014;29(8):1729–36.

    Article  PubMed  Google Scholar 

  40. Witzke KA, Snow CM. Lean body mass and leg power best predict bone mineral density in adolescent girls. Med Sci Sports Exerc. 1999;31(11):1558–63.

    Article  CAS  PubMed  Google Scholar 

  41. Schonau E. The development of the skeletal system in children and the influence of muscular strength. Horm Res. 1998;49(1):27–31.

    CAS  PubMed  Google Scholar 

  42. Kaji H, Kosaka R, Yamauchi M, Kuno K, Chihara K, Sugimoto T. Effects of age, grip strength and smoking on forearm volumetric bone mineral density and bone geometry by peripheral quantitative computed tomography: comparisons between female and male. Endocr J. 2005;52(6):659–66.

    Article  PubMed  Google Scholar 

  43. Hasegawa Y, Schneider P, Reiners C. Age, sex, and grip strength determine architectural bone parameters assessed by peripheral quantitative computed tomography (pQCT) at the human radius. J Biomech. 2001;34(4):497–503.

    Article  CAS  PubMed  Google Scholar 

  44. Faje A, Klibanski A. Body composition and skeletal health: too heavy? Too thin? Curr Osteoporos Rep. 2012;10(3):208–16.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wolff J. The law of bone remodeling. New York, NY: Springer; 1986.

    Book  Google Scholar 

  46. Lanyon LE, Rubin CT. Static vs dynamic loads as an influence on bone remodelling. J Biomech. 1984;17(12):897–905.

    Article  CAS  PubMed  Google Scholar 

  47. World Health Organization W. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser. 1994;843:1–129.

    Google Scholar 

  48. Endocrinology TSo. Bone densitometry in children and adolescents. Pediatrics. 2011;127(1):189–94.

    Article  Google Scholar 

  49. Bacchetta J, Boutroy S, Vilayphiou N, Ranchin B, Fouque-Aubert A, Basmaison O, et al. Bone assessment in children with chronic kidney disease: data from two new bone imaging techniques in a single-center pilot study. Pediatr Nephrol. 2011;26(4):587–95.

    Article  PubMed  Google Scholar 

  50. Fewtrell MS, Gordon I, Biassoni L, Cole TJ. Dual X-ray absorptiometry (DXA) of the lumbar spine in a clinical paediatric setting: does the method of size-adjustment matter? Bone. 2005;37(3):413–9.

    Article  CAS  PubMed  Google Scholar 

  51. Binkovitz LA, Henwood MJ. Pediatric DXA: technique and interpretation. Pediatr Radiol. 2007;37(1):21–31.

    Article  PubMed  Google Scholar 

  52. Adams JE. Quantitative computed tomography. Eur J Radiol. 2009;71(3):415–24.

    Article  PubMed  Google Scholar 

  53. Adams JE, Engelke K, Zemel BS, Ward KA. Quantitative computer tomography in children and adolescents: the 2013 ISCD pediatric official positions. J Clin Densitom. 2014;17(2):258–74.

    Article  PubMed  Google Scholar 

  54. Nishiyama KK, Shane E. Clinical imaging of bone microarchitecture with HR-pQCT. Curr Osteoporos Rep. 2013;11(2):147–55.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Liu XS, Zhang XH, Sekhon KK, Adams MF, McMahon DJ, Bilezikian JP, et al. High-resolution peripheral quantitative computed tomography can assess microstructural and mechanical properties of human distal tibial bone. J Bone Miner Res. 2010;25(4):746–56.

    CAS  PubMed  Google Scholar 

  56. Macneil JA, Boyd SK. Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. Bone. 2008;42(6):1203–13.

    Article  PubMed  Google Scholar 

  57. Liu XS, Cohen A, Shane E, Yin PT, Stein EM, Rogers H, et al. Bone density, geometry, microstructure, and stiffness: relationships between peripheral and central skeletal sites assessed by DXA, HR-pQCT, and cQCT in premenopausal women. J Bone Miner Res. 2010;25(10):2229–38.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Cohen A, Dempster DW, Muller R, Guo XE, Nickolas TL, Liu XS, et al. Assessment of trabecular and cortical architecture and mechanical competence of bone by high-resolution peripheral computed tomography: comparison with transiliac bone biopsy. Osteoporos Int. 2010;21(2):263–73.

    Article  CAS  PubMed  Google Scholar 

  59. Cheng JCY, Qin L, Cheung CSK, Sher AHL, Lee KM, Ng SWE, et al. Generalized low areal and volumetric bone mineral density in adolescent idiopathic scoliosis. J Bone Miner Res. 2000;15(8):1587–95.

    Article  CAS  PubMed  Google Scholar 

  60. El Maghraoui A, Roux C. DXA scanning in clinical practice. QJM. 2008;101(8):605–17.

    Article  PubMed  Google Scholar 

  61. Burner WL III, Badger VM, Sherman FC. Osteoporosis and acquired back deformities. J Pediatr Orthop. 1982;2(4):383–5.

    Article  PubMed  Google Scholar 

  62. Healey JH, Lane JM. Structural scoliosis in osteoporotic women. Clin Orthop Relat Res. 1985;195:216–23.

    Google Scholar 

  63. Cook SD, Harding AF, Morgan EL, Nicholson RJ, Thomas KA, Whitecloud TS, et al. Trabecular bone mineral density in idiopathic scoliosis. J Pediatr Orthop. 1987;7(2):168–74.

    Article  CAS  PubMed  Google Scholar 

  64. Lee WTK, Cheung CSK, Tse YK, Guo X, Qin L, Lam TP, et al. Association of osteopenia with curve severity in adolescent idiopathic scoliosis: a study of 919 girls. Osteoporos Int. 2005;16:1924–32.

    Article  PubMed  Google Scholar 

  65. Yeung HY, Qin L, Hung VW, Lee KM, Guo X, Ng BW, et al. Lower degree of mineralization found in cortical bone of adolescent idiopathic scoliosis (AIS). Stud Health Technol Inform. 2006;123:599–604.

    CAS  PubMed  Google Scholar 

  66. Cheng JCY, Guo X, Sher AHL. Persistent osteopenia in adolescent idiopathic scoliosis – a longitudinal follow-up study. Spine. 1999;24(12):1218–22.

    Article  CAS  PubMed  Google Scholar 

  67. Lam TP, Hung VW, Yeung HY, Tse YK, Chu WC, Ng BK, et al. Abnormal bone quality in adolescent idiopathic scoliosis: a case-control study on 635 subjects and 269 normal controls with bone densitometry and quantitative ultrasound. Spine (Phila Pa 1976). 2011;36(15):1211–7.

    Article  Google Scholar 

  68. Thomas KA, Cook SD, Skalley TC, Renshaw SV, Makuch RS, Gross M, et al. Lumbar spine and femoral neck bone mineral density in idiopathic scoliosis: a follow-up study. J Pediatr Orthop. 1992;12(2):235–40.

    Article  CAS  PubMed  Google Scholar 

  69. Snyder BD, Katz DA, Myers ER, Breitenbach MA, Emans JB. Bone density accumulation is not affected by brace treatment of idiopathic scoliosis in adolescent girls. J Pediatr Orthop. 2005;25(4):423–8.

    Article  PubMed  Google Scholar 

  70. Soucacos PN, Zacharis K, Soultanis K, Gelalis J, Xenakis T, Beris AE. Risk factors for idiopathic scoliosis: review of a 6-year prospective study. Orthopedics. 2000;23(8):833–8.

    CAS  PubMed  Google Scholar 

  71. Hung VWY, Qin L, Cheung CSK, Lam TP, Ng BKW, Tse YK, et al. Osteopenia: a new prognostic factor of curve progression in adolescent idiopathic scoliosis. J Bone Joint Surg. 2005;87(12):2709–16.

    CAS  PubMed  Google Scholar 

  72. Lam TP, Hung VW, Yeung HY, Chu WC, Ng BK, Lee KM, et al. Quantitative ultrasound for predicting curve progression in adolescent idiopathic scoliosis: a prospective cohort study of 294 cases followed-up beyond skeletal maturity. Ultrasound Med Biol. 2013;39(3):381–7.

    Article  PubMed  Google Scholar 

  73. Yip BH, Yu FW, Wang Z, Hung VW, Lam TP, Ng BK, et al. Prognostic value of bone mineral density on curve progression: a longitudinal cohort study of 513 girls with adolescent idiopathic scoliosis. Sci Rep. 2016;6:39220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Slemenda CW, Miller JZ, Hui SL, Reister TK, Johnston CC Jr. Role of physical activity in the development of skeletal mass in children. J Bone Miner Res. 1991;6(11):1227–33.

    Article  CAS  PubMed  Google Scholar 

  75. Rubin K, Schirduan V, Gendreau P, Sarfarazi M, Mendola R, Dalsky G. Predictors of axial and peripheral bone mineral density in healthy children and adolescents, with special attention to the role of puberty. J Pediatr. 1993;123(6):863–70.

    Article  CAS  PubMed  Google Scholar 

  76. Lee WTK, Cheung CSK, Tse YK, Guo X, Qin L, Ho SC, et al. Generalized low bone mass of girls with adolescent idiopathic scoliosis is related to inadequate calcium intake and weight bearing physical activity in peripubertal period. Osteoporos Int. 2005;16:1024–35.

    Article  CAS  PubMed  Google Scholar 

  77. Yu WS, Chan KY, Yu FW, Ng BK, Lee KM, Qin L, et al. Bone structural and mechanical indices in adolescent idiopathic scoliosis evaluated by high-resolution peripheral quantitative computed tomography (HR-pQCT). Bone. 2014;61C:109–15.

    Article  Google Scholar 

  78. Rizzoli R, Bonjour JP. Physiology of calcium and phosphate homeostases. In: Seibel MJ, Robins SP, Bilezikian JP, editors. Dynamics of bone and cartilage metabolism. London: Academic; 2006. p. 345–60.

    Chapter  Google Scholar 

  79. Society CN. Chinese dietary reference intakes. Beijing: Chinese Light Industry Press; 2000.

    Google Scholar 

  80. Akseer N, Kish K, Rigby WA, Greenway M, Klentrou P, Wilson PM, et al. Does bracing affect bone health in women with adolescent idiopathic scoliosis? Scoliosis. 2015;10:5.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Gozdzialska A, Jaskiewicz J, Knapik-Czajka M, Drag J, Gawlik M, Ciesla M, et al. Association of calcium and phosphate balance, vitamin D, PTH, and calcitonin in patients with adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2016;41(8):693–7.

    Article  Google Scholar 

  82. Balioglu MB, Aydin C, Kargin D, Albayrak A, Atici Y, Tas SK, et al. Vitamin-D measurement in patients with adolescent idiopathic scoliosis. J Pediatr Orthop B. 2017;26(1):48–52.

    Article  PubMed  Google Scholar 

  83. Andrew T, Macgregor AJ. Genes and osteoporosis. Curr Osteoporos Rep. 2004;2(3):79–89.

    Article  PubMed  Google Scholar 

  84. Sobieszczanska M, Jonkisz J, Tabin M, Laszki-Szczachor K. Osteoporosis: genetic determinants and relationship with cardiovascular disease. Adv Clin Exp Med. 2013;22(1):119–24.

    PubMed  Google Scholar 

  85. Richards JB, Kavvoura FK, Rivadeneira F, Styrkarsdottir U, Estrada K, Halldorsson BV, et al. Collaborative meta-analysis: associations of 150 candidate genes with osteoporosis and osteoporotic fracture. Ann Intern Med. 2009;151(8):528–37.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Richards JB, Zheng HF, Spector TD. Genetics of osteoporosis from genome-wide association studies: advances and challenges. Nat Rev Genet. 2012;13(8):576–88.

    Article  CAS  PubMed  Google Scholar 

  87. Pothuaud L, Van Rietbergen B, Mosekilde L, Beuf O, Levitz P, Benhamou CL, et al. Combination of topological parameters and bone volume fraction better predicts the mechanical properties of trabecular bone. J Biomech. 2002;35(8):1091–9.

    Article  PubMed  Google Scholar 

  88. Pistoia W, van Rietbergen B, Lochmuller EM, Lill CA, Eckstein F, Ruegsegger P. Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone. 2002;30(6):842–8.

    Article  CAS  PubMed  Google Scholar 

  89. Sornay-Rendu E, Boutroy S, Munoz F, Delmas PD. Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study. J Bone Miner Res. 2007;22(3):425–33.

    Article  PubMed  Google Scholar 

  90. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285(6):785–95.

    Article  Google Scholar 

  91. Wang Z, Chen H, Yu YE, Zhang J, Cheuk KY, Ng BK, et al. Unique local bone tissue characteristics in iliac crest bone biopsy from adolescent idiopathic scoliosis with severe spinal deformity. Sci Rep. 2017;7:40265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Okata H, Nakamura M, Henmi A, Yamaguchi S, Mikami Y, Shimauchi H, et al. Calcification during bone healing in a standardised rat calvarial defect assessed by micro-CT and SEM-EDX. Oral Dis. 2015;21(1):74–82.

    Article  CAS  PubMed  Google Scholar 

  93. Tzaphlidou M, Speller R, Royle G, Griffiths J, Olivo A, Pani S, et al. High resolution Ca/P maps of bone architecture in 3D synchrotron radiation microtomographic images. Appl Rad Isotopes. 2005;62(4):569–75.

    Article  CAS  Google Scholar 

  94. Yu W, Chan Ky YFWP, Hy Y, Ng BKW, Lee K, et al. Abnormal bone quality versus low bone mineral density in adolescent idiopathic scoliosis: a case-control study with in vivo high-resolution peripheral quantitative computed tomography. Spine J. 2013;13(11):1493–9.

    Article  PubMed  Google Scholar 

  95. Liu XS, Sajda P, Saha PK, Wehrli FW, Bevill G, Keaveny TM, et al. Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone. J Bone Miner Res. 2008;23(2):223–35.

    Article  PubMed  Google Scholar 

  96. Liu XS, Stein EM, Zhou B, Zhang CA, Nickolas TL, Cohen A, et al. Individual trabecula segmentation (ITS)-based morphological analyses and microfinite element analysis of HR-pQCT images discriminate postmenopausal fragility fractures independent of DXA measurements. J Bone Miner Res. 2012;27(2):263–72.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Cheung CS, Lee WT, Tse YK, Lee KM, Guo X, Qin L, et al. Generalized osteopenia in adolescent idiopathic scoliosis—association with abnormal pubertal growth, bone turnover, and calcium intake? Spine (Phila Pa 1976). 2006;31(3):330–8.

    Article  Google Scholar 

  98. Suh KT, Lee SS, Hwang SH, Kim SJ, Lee JS. Elevated soluble receptor activator of nuclear factor-kappaB ligand and reduced bone mineral density in patients with adolescent idiopathic scoliosis. Eur Spine J. 2007;16(10):1563–9.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Brzezinski A. Melatonin in humans. N Engl J Med. 1997;336(3):186–95.

    Article  CAS  PubMed  Google Scholar 

  100. O'Kelly C, Wang X, Raso J, Moreau M, Mahood J, Zhao J, et al. The production of scoliosis after pinealectomy in young chickens, rats, and hamsters. Spine. 1999;24(1):35–43.

    Article  PubMed  Google Scholar 

  101. Machida M, Saito M, Dubousset J, Yamada T, Kimura J, Shibasaki K. Pathological mechanism of idiopathic scoliosis: Experimental scoliosis in pinealectomized rats. Eur Spine J. 2005;14(9):843–8.

    Article  PubMed  Google Scholar 

  102. Machida M, Dubousset J, Imamura Y, Iwaya T, Yamada T, Kimura J. An experimental study in chickens for the pathogenesis of idiopathic scoliosis. Spine. 1993;18(12):1609–15.

    Article  CAS  PubMed  Google Scholar 

  103. Moreau A, Wang DS, Forget S, Azeddine B, Angeloni D, Fraschini F, et al. Melatonin signaling dysfunction in adolescent idiopathic scoliosis. Spine. 2004;29(16):1772–81.

    Article  PubMed  Google Scholar 

  104. Moreau A, Akoumé Ndong MY, Azeddine B, Franco A, Rompré PH, Roy-Gagnon MH, et al. Molecular and genetic aspects of idiopathic scoliosis: Blood test for idiopathic scoliosis. Orthopade. 2009;38(2):114–21.

    Article  CAS  PubMed  Google Scholar 

  105. Man G, Wang W, Yeung B, Lee S, Ng B, Hung W-Y, et al. Abnormal proliferation and differentiation of osteoblasts from girls with adolescent idiopathic scoliosis to melatonin. J Pineal Res. 2010;49:69–77.

    CAS  PubMed  Google Scholar 

  106. Man GCW, Wong JH, Wang WWJ, Sun GQ, Yeung BHY, Ng TB, et al. Abnormal melatonin receptor 1B expression in osteoblasts from girls with adolescent idiopathic scoliosis. J Pineal Res. 2011;50(4):395–402.

    Article  CAS  PubMed  Google Scholar 

  107. Yim AP, Yeung HY, Sun G, Lee KM, Ng TB, Lam TP, et al. Abnormal skeletal growth in adolescent idiopathic scoliosis is associated with abnormal quantitative expression of melatonin receptor, MT2. Int J Mol Sci. 2013;14(3):6345–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Qiu XS, Tang NLS, Yeung HY, Lee KM, Hung VWY, Ng BKW, et al. Melatonin receptor 1B (MTNR1B) gene polymorphism is associated with the occurrence of adolescent idiopathic scoliosis. Spine. 2007;32(16):1748–53.

    Article  PubMed  Google Scholar 

  109. Qiu Y, Sun X, Qiu X, Li W, Zhu Z, Zhu F, et al. Decreased circulating leptin level and its association with body and bone mass in girls with adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2007;32(24):2703–10.

    Article  Google Scholar 

  110. Liu Z, Tam EM, Sun GQ, Lam TP, Zhu ZZ, Sun X, et al. Abnormal leptin bioavailability in adolescent idiopathic scoliosis: an important new finding. Spine (Phila Pa 1976). 2012;37(7):599–604.

    Article  Google Scholar 

  111. Tam EM, Yu FW, Hung VW, Liu Z, Liu KL, Ng BK, et al. Are volumetric bone mineral density and bone micro-architecture associated with leptin and soluble leptin receptor levels in adolescent idiopathic scoliosis? A case-control study. PLoS One. 2014;9(2):e87939.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Burwell RG, Dangerfield PH, Moulton A, Anderson SI. Etiologic theories of idiopathic scoliosis: autonomic nervous system and the leptin-sympathetic nervous system concept for the pathogenesis of adolescent idiopathic scoliosis. Stud Health Technol Inform. 2008;140:197–207.

    CAS  PubMed  Google Scholar 

  113. Leboeuf D, Letellier K, Alos N, Edery P, Moldovan F. Do estrogens impact adolescent idiopathic scoliosis? Trends Endocrinol Metab. 2009;20(4):147–52.

    Article  CAS  PubMed  Google Scholar 

  114. Rubin C, Turner AS, Bain S, Mallinckrodt C, McLeod K. Low mechanical signals strengthen long bones. Nature. 2001;412(6847):603–4.

    Article  CAS  PubMed  Google Scholar 

  115. Gilsanz V, Wren TA, Sanchez M, Dorey F, Judex S, Rubin C. Low-level, high-frequency mechanical signals enhance musculoskeletal development of young women with low BMD. J Bone Miner Res. 2006;21(9):1464–74.

    Article  PubMed  Google Scholar 

  116. Rubin C, Recker R, Cullen D, Ryaby J, McCabe J, McLeod K. Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J Bone Miner Res. 2004;19(3):343–51.

    Article  PubMed  Google Scholar 

  117. Slatkovska L, Alibhai SM, Beyene J, Cheung AM. Effect of whole-body vibration on BMD: a systematic review and meta-analysis. Osteoporos Int. 2010;21(12):1969–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kohrt WM. Aging and the osteogenic response to mechanical loading. Int J Sport Nutr Exerc Metab. 2001;11(Suppl):S137–42.

    Article  PubMed  Google Scholar 

  119. Lam TP, Ng BK, Cheung LW, Lee KM, Qin L, Cheng JC. Effect of whole body vibration (WBV) therapy on bone density and bone quality in osteopenic girls with adolescent idiopathic scoliosis: a randomized, controlled trial. Osteoporos Int. 2013;24(5):1623–36.

    Article  CAS  PubMed  Google Scholar 

  120. Lee WT, Jiang J. The resurgence of the importance of vitamin D in bone health. Asia Pac J Clin Nutr. 2008;17(Suppl 1):138–42.

    CAS  PubMed  Google Scholar 

  121. Grivas TB, Vasiliadis E, Savvidou O, Mouzakis V, Koufopoulos G. Geographic latitude and prevalence of adolescent idiopathic scoliosis. Stud Health Technol Inform. 2006;123:84–9.

    PubMed  Google Scholar 

  122. Lam TP, Yu WS, Mak WY, Cheung TF, Lee KM, BKW N, et al., editors. Vitamin D insufficiency and its association with low bone mass in girls with adolescent idiopathic scoliosis (AIS). 48th Scoliosis Research Society (SRS) annual meeting, Sep 2013. Lyon: Scoliosis Research Society (SRS); 2013.

    Google Scholar 

  123. Hung VWY, Qin L, Cheung CSK, Lam TP, Ng BKW, Tse YK, et al. Osteopenia: a new prognostic factor of curve progression in adolescent idiopathic scoliosis. J Bone Joint Surg Am. 2005;87:2709–16.

    CAS  PubMed  Google Scholar 

  124. Schneider P, Meier M, Wepf R, Muller R. Towards quantitative 3D imaging of the osteocyte lacuno-canalicular network. Bone. 2010;47(5):848–58.

    Article  PubMed  Google Scholar 

  125. Ruchon AF, Tenenhouse HS, Marcinkiewicz M, Siegfried G, Aubin JE, DesGroseillers L, et al. Developmental expression and tissue distribution of Phex protein: effect of the Hyp mutation and relationship to bone markers. J Bone Miner Res. 2000;15(8):1440–50.

    Article  CAS  PubMed  Google Scholar 

  126. Zhao CQ, Liu D, Li H, Jiang LS, Dai LY. Expression of leptin and its functional receptor on disc cells: contribution to cell proliferation. Spine (Phila Pa 1976). 2008;33(23):E858–64.

    Article  Google Scholar 

  127. Jones SJ, Glorieux FH, Travers R, Boyde A. The microscopic structure of bone in normal children and patients with osteogenesis imperfecta: a survey using backscattered electron imaging. Calcif Tissue Int. 1999;64(1):8–17.

    Article  CAS  PubMed  Google Scholar 

  128. Knothe Tate ML, Adamson JR, Tami AE, Bauer TW. The osteocyte. Int J Biochem Cell Biol. 2004;36(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  129. Cheng JC, Tang SP, Guo X, Chan CW, Qin L. Osteopenia in adolescent idiopathic scoliosis: a histomorphometric study. Spine (Phila Pa 1976). 2001;26(3):E19–23.

    Article  CAS  Google Scholar 

  130. Ren Y, Lin S, Jing Y, Dechow PC, Feng JQ. A novel way to statistically analyze morphologic changes in Dmp1-null osteocytes. Connect Tissue Res. 2014;55(Suppl 1):129–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Cejka D, Jager-Lansky A, Kieweg H, Weber M, Bieglmayer C, Haider DG, et al. Sclerostin serum levels correlate positively with bone mineral density and microarchitecture in haemodialysis patients. Nephrol Dial Transplant. 2012;27(1):226–30.

    Article  CAS  PubMed  Google Scholar 

  132. Christen P, Ito K, Ellouz R, Boutroy S, Sornay-Rendu E, Chapurlat RD, et al. Bone remodelling in humans is load-driven but not lazy. Nat Commun. 2014;5:4855.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack C. Y. Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Japan KK

About this chapter

Cite this chapter

Cheng, J.C.Y., Lee, W.Y.W., Tam, E.M.S., Lam, T.P. (2018). Bone Metabolism in AIS. In: Machida, M., Weinstein, S., Dubousset, J. (eds) Pathogenesis of Idiopathic Scoliosis. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56541-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56541-3_6

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56539-0

  • Online ISBN: 978-4-431-56541-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics