Biochemistry of Idiopathic Scoliosis: From Discovery to Diagnostic Biomarkers

  • Dina Nada
  • Alain MoreauEmail author


Idiopathic scoliosis (IS) is a condition where the spinal curve is deformed. IS appears at the onset of puberty and is most often seen in women. Current literature reveals potential biomarkers of the onset and progression of IS, which include hormones, systemic factors, hematological factors, and bone metabolism factors. Hormones that include growth hormone, melatonin, estrogen, ghrelin, and leptin, systemic factors, such as osteopontin and Gi proteins; proteins involved in bone metabolism, such as matrilin-1, cartilage oligomeric matrix protein and osteocalcin; and the hematological protein calmodulin, have been implicated as potential diagnostic biomarkers in IS. Most of these biochemical factors are interconnected through signaling pathways. In this chapter we discuss the validity of published studies and the contradictory data for each factor. We will also elaborate on the hypotheses associated with these factors and their potential relevance in the pathogenesis of IS.


Idiopathic scoliosis Scoliosis etiopathogenesis Biochemical factors 



The authors would like to thank Dr. Smitha S. Dutt and Ms. Anita Franco for their critical review, writing assistance, and technical editing of this book chapter. This work was supported in part by a research grant from the Yves Cotrel Foundation (Institut de France, Paris). Mrs. Dina Nada was the recipient of CHU Sainte-Justine Foundation Scholarship.


  1. 1.
    Cheng JC, Castelein RM, Chu WC, Danielsson AJ, Dobbs MB, Grivas TB, et al. Primer. Nature. 2015;Google Scholar
  2. 2.
    Noshchenko A, Hoffecker L, Lindley EM, Burger EL, Cain CM, Patel VV, et al. Predictors of spine deformity progression in adolescent idiopathic scoliosis: a systematic review with meta-analysis. World J Orthoped. 2015;6(7):537.CrossRefGoogle Scholar
  3. 3.
    Weinstein SL, Dolan LA, Cheng JC, Danielsson A, Morcuende JA. Adolescent idiopathic scoliosis. Lancet. 2008;371(9623):1527–37.PubMedCrossRefGoogle Scholar
  4. 4.
    Loncar-Dusek M, Pecina M, Prebeg Z. A longitudinal study of growth velocity and development of secondary gender characteristics versus onset of idiopathic scoliosis. Clin Orthop Relat Res. 1991;270:278–82.Google Scholar
  5. 5.
    Archer IA, Dickson RA. Stature and idiopathic scoliosis. A prospective study. J Bone Joint Surg Br. 1985;67(2):185–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Skogland LB, Steen H, Trygstad O. Spinal deformities in tall girls. Acta Orthop Scand. 1985;56(2):155–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Siu King Cheung C, Tak Keung Lee W, Kit Tse Y, Ping Tang S, Man Lee K, Guo X, et al. Abnormal peri-pubertal anthropometric measurements and growth pattern in adolescent idiopathic scoliosis: a study of 598 patients. Spine (Phila Pa 1976). 2003;28(18):2152–7.CrossRefGoogle Scholar
  8. 8.
    Yim AP, Yeung HY, Hung VW, Lee KM, Lam TP, Ng BK, et al. Abnormal skeletal growth patterns in adolescent idiopathic scoliosis—a longitudinal study until skeletal maturity. Spine (Phila Pa 1976). 2012;37(18):E1148–54.CrossRefGoogle Scholar
  9. 9.
    Willner S, Nilsson KO, Kastrup K, Bergstrand CG. Growth hormone and somatomedin A in girls with adolescent idiopathic scoliosis. Acta Paediatr Scand. 1976;65(5):547–52.PubMedCrossRefGoogle Scholar
  10. 10.
    Dymling JF, Willner S. Progression of a structural scoliosis during treatment with growth hormone. A case report. Acta Orthop Scand. 1978;49(3):264–8.PubMedCrossRefGoogle Scholar
  11. 11.
    de Lind van Wijngaarden RF, de Klerk LW, Festen DA, Duivenvoorden HJ, Otten BJ, Hokken-Koelega AC. Randomized controlled trial to investigate the effects of growth hormone treatment on scoliosis in children with Prader-Willi syndrome. J Clin Endocrinol Metab. 2009;94(4):1274–80.PubMedCrossRefGoogle Scholar
  12. 12.
    Willner S, Johnell O. Study of biochemical and hormonal data in idiopathic scoliosis in girls. Arch Orthop Trauma Surg. 1981;98(4):251–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Ahl T, Albertsson-Wikland K, Kalen R. Twenty-four-hour growth hormone profiles in pubertal girls with idiopathic scoliosis. Spine (Phila Pa 1976). 1988;13(2):139–42.CrossRefGoogle Scholar
  14. 14.
    Zhuang Q, Wu Z, Qiu G. Is polymorphism of CALM1 gene or growth hormone receptor gene associated with susceptibility to adolescent idiopathic scoliosis? Zhonghua Yi Xue Za Zhi. 2007;87(31):2198–202.PubMedGoogle Scholar
  15. 15.
    Qiu XS, Tang NL, Yeung HY, Qiu Y, Cheng JC. Genetic association study of growth hormone receptor and idiopathic scoliosis. Clin Orthop Relat Res. 2007;462:53–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Hesse V, Jahreis G, Schambach H, Vogel H, Vilser C, Seewald H, et al. Insulin-like growth factor I correlations to changes of the hormonal status in puberty and age. Exp Clin Endocrinol. 1993;102(4):289–98.CrossRefGoogle Scholar
  17. 17.
    Juul A, Dalgaard P, Blum WF, Bang P, Hall K, Michaelsen KF, et al. Serum levels of insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) in healthy infants, children, and adolescents: the relation to IGF-I, IGF-II, IGFBP-1, IGFBP-2, age, sex, body mass index, and pubertal maturation. J Clin Endocrinol Metab. 1995;80(8):2534–42.PubMedGoogle Scholar
  18. 18.
    Sanders JO, Browne RH, Cooney TE, Finegold DN, McConnell SJ, Margraf SA. Correlates of the peak height velocity in girls with idiopathic scoliosis. Spine. 2006;31(20):2289–95.PubMedCrossRefGoogle Scholar
  19. 19.
    Sanders JO, Browne RH, McConnell SJ, Margraf SA, Cooney TE, Finegold DN. Maturity assessment and curve progression in girls with idiopathic scoliosis. J Bone Joint Surg Am. 2007;89(1):64–73.PubMedCrossRefGoogle Scholar
  20. 20.
    Yeung HY, Tang NL, Lee KM, Ng BK, Hung VW, Kwok R, et al. Genetic association study of insulin-like growth factor-I (IGF-I) gene with curve severity and osteopenia in adolescent idiopathic scoliosis. Stud Health Technol Inform. 2006;123:18–24.PubMedGoogle Scholar
  21. 21.
    Moon ES, Kim HS, Sharma V, Park JO, Lee HM, Moon SH, et al. Analysis of single nucleotide polymorphism in adolescent idiopathic scoliosis in Korea: for personalized treatment. Yonsei Med J. 2013;54(2):500–9.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Yang Y, Wu Z, Zhao T, Wang H, Zhao D, Zhang J, et al. Adolescent idiopathic scoliosis and the single-nucleotide polymorphism of the growth hormone receptor and IGF-1 genes. Orthopedics. 2009;32(6):411.PubMedCrossRefGoogle Scholar
  23. 23.
    Takahashi Y, Matsumoto M, Karasugi T, Watanabe K, Chiba K, Kawakami N, et al. Lack of association between adolescent idiopathic scoliosis and previously reported single nucleotide polymorphisms in MATN1, MTNR1B, TPH1, and IGF1 in a Japanese population. J Orthop Res. 2011;29(7):1055–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Liu W, Qiu Y, Chen Z, Liu Z, Shu H, Wang X, et al. Association between insulin-like growth factor-1 receptor gene polymorphisms and with susceptibility to adolescent idiopathic scoliosis. Chin J Surg. 2009;47(23):1813–6.PubMedGoogle Scholar
  25. 25.
    Moldovan F, Letellier K, Azeddine F, Lacroix G, Wang D, Turgeon I, et al. The role of estrogens and estrogen receptors in the pathogenesis of adolescent idiopathic scoliosis (AIS). J Bone Joint Surg. 2008;90(Suppl III):431.Google Scholar
  26. 26.
    Iwamuro S, Sakakibara M, Terao M, Ozawa A, Kurobe C, Shigeura T, et al. Teratogenic and anti-metamorphic effects of bisphenol A on embryonic and larval Xenopus laevis. Gen Comp Endocrinol. 2003;133(2):189–98.PubMedCrossRefGoogle Scholar
  27. 27.
    Boudreau M, Courtenay SC, Maclatchy DL, Bérubé CH, Parrott JL, Van Der Kraak GJ. Utility of morphological abnormalities during early-life development of the estuarine mummichog, Fundulus heteroclitus, as an indicator of estrogenic and antiestrogenic endocrine disruption. Environ Toxicol Chem. 2004;23(2):415–25.PubMedCrossRefGoogle Scholar
  28. 28.
    Grumbach MM. Estrogen, bone, growth and sex: a sea change in conventional wisdom. J Pediatr Endocrinol Metab. 2000;13(Suppl 6):1439–55.PubMedGoogle Scholar
  29. 29.
    Kulis A, Zarzycki D, Jaśkiewicz J. Concentration of estradiol in girls with idiopathic scoliosis. Ortop Traumatol Rehabil. 2006;8(4):455–9.PubMedGoogle Scholar
  30. 30.
    Esposito T, Uccello R, Caliendo R, Di Martino G, Carnevale UG, Cuomo S, et al. Estrogen receptor polymorphism, estrogen content and idiopathic scoliosis in human: a possible genetic linkage. J Steroid Biochem Mol Biol. 2009;116(1):56–60.PubMedCrossRefGoogle Scholar
  31. 31.
    Warren MP, Brooks-Gunn J, Hamilton LH, Warren LF, Hamilton WG. Scoliosis and fractures in young ballet dancers. Relation to delayed menarche and secondary amenorrhea. N Engl J Med. 1986;314(21):1348–53.PubMedCrossRefGoogle Scholar
  32. 32.
    Leboeuf D, Letellier K, Alos N, Edery P, Moldovan F. Do estrogens impact adolescent idiopathic scoliosis? Trends Endocrinol Metabol. 2009;20(4):147–52.CrossRefGoogle Scholar
  33. 33.
    Letellier K, Azeddine B, Parent S, Labelle H, Rompre PH, Moreau A, et al. Estrogen cross-talk with the melatonin signaling pathway in human osteoblasts derived from adolescent idiopathic scoliosis patients. J Pineal Res. 2008;45(4):383–93.PubMedCrossRefGoogle Scholar
  34. 34.
    Raczkowski JW. The concentrations of testosterone and estradiol in girls with adolescent idiopathic scoliosis. Neuro Endocrinol Lett. 2007;28(3):302–4.PubMedGoogle Scholar
  35. 35.
    Slemenda CW, Reister TK, Hui SL, Miller JZ, Christian JC, Johnston CC Jr. Influences on skeletal mineralization in children and adolescents: evidence for varying effects of sexual maturation and physical activity. J Pediatr. 1994;125(2):201–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Riggs BL, Khosla S, Melton LJ III. Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev. 2002;23(3):279–302.PubMedCrossRefGoogle Scholar
  37. 37.
    Lombardi G, Akoume MY, Colombini A, Moreau A, Banfi G. Biochemistry of adolescent idiopathic scoliosis. Adv Clin Chem. 2011;54:165–82.PubMedCrossRefGoogle Scholar
  38. 38.
    Eastell R. Role of oestrogen in the regulation of bone turnover at the menarche. J Endocrinol. 2005;185(2):223–34.PubMedCrossRefGoogle Scholar
  39. 39.
    Manolagas SC, Jilka RL. Cytokines, hematopoiesis, osteoclastogenesis, and estrogens. Calcif Tissue Int. 1992;50(3):199–202.PubMedCrossRefGoogle Scholar
  40. 40.
    Burner WL III, Badger VM, Sherman FC. Osteoporosis and acquired back deformities. J Pediatr Orthop. 1982;2(4):383–5.PubMedCrossRefGoogle Scholar
  41. 41.
    Thomas KA, Cook SD, Skalley TC, Renshaw SV, Makuch RS, Gross M, et al. Lumbar spine and femoral neck bone mineral density in idiopathic scoliosis: a follow-up study. J Pediatr Orthop. 1992;12(2):235–40.PubMedCrossRefGoogle Scholar
  42. 42.
    Hung VW, Qin L, Cheung CS, Lam TP, Ng BK, Tse YK, et al. Osteopenia: a new prognostic factor of curve progression in adolescent idiopathic scoliosis. J Bone Joint Surg Am. 2005;87(12):2709–16.PubMedGoogle Scholar
  43. 43.
    Cheng JC, Guo X, Sher AH. Persistent osteopenia in adolescent idiopathic scoliosis. A longitudinal follow up study. Spine (Phila Pa 1976). 1999;24(12):1218–22.CrossRefGoogle Scholar
  44. 44.
    Lee WT, Cheung CS, Tse YK, Guo X, Qin L, Lam TP, et al. Association of osteopenia with curve severity in adolescent idiopathic scoliosis: a study of 919 girls. Osteoporos Int. 2005;16(12):1924–32.PubMedCrossRefGoogle Scholar
  45. 45.
    Moreau A, Wang DS, Forget S, Azeddine B, Angeloni D, Fraschini F, et al. Melatonin signaling dysfunction in adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2004;29(16):1772–81.CrossRefGoogle Scholar
  46. 46.
    Papaioannou S, Tumber AM, Meikle MC, McDonald F. G-protein signalling pathways and oestrogen: a role of balanced maintenance in osteoblasts. Biochim Biophys Acta. 1999;1449(3):284–92.PubMedCrossRefGoogle Scholar
  47. 47.
    Demirkiran G, Dede O, Yalcin N, Akel I, Marcucio R, Acaroglu E. Selective estrogen receptor modulation prevents scoliotic curve progression: radiologic and histomorphometric study on a bipedal C57Bl6 mice model. Eur Spine J. 2014;23(2):455–62.PubMedCrossRefGoogle Scholar
  48. 48.
    Akel I, Demirkıran G, Alanay A, Karahan S, Marcucio R, Acaroglu E. The effect of calmodulin antagonists on scoliosis: bipedal C57BL/6 mice model. Eur Spine J. 2009;18(4):499–505.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Akel I, Kocak O, Bozkurt G, Alanay A, Marcucio R, Acaroglu E. The effect of calmodulin antagonists on experimental scoliosis: a pinealectomized chicken model. Spine (Phila Pa 1976). 2009;34(6):533–8.CrossRefGoogle Scholar
  50. 50.
    Kindsfater K, Lowe T, Lawellin D, Weinstein D, Akmakjian J. Levels of platelet calmodulin for the prediction of progression and severity of adolescent idiopathic scoliosis. J Bone Joint Surg Am. 1994;76(8):1186–92.PubMedCrossRefGoogle Scholar
  51. 51.
    Lowe T, Lawellin D, Smith D, Price C, Haher T, Merola A, et al. Platelet calmodulin levels in adolescent idiopathic scoliosis: do the levels correlate with curve progression and severity? Spine. 2002;27(7):768–75.PubMedCrossRefGoogle Scholar
  52. 52.
    Cutler GB Jr. The role of estrogen in bone growth and maturation during childhood and adolescence. J Steroid Biochem Mol Biol. 1997;61(3-6):141–4.PubMedCrossRefGoogle Scholar
  53. 53.
    Lee PA, Witchel SF. The influence of estrogen on growth. Curr Opin Pediatr. 1997;9(4):431–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Nilsson O, Chrysis D, Pajulo O, Boman A, Holst M, Rubinstein J, et al. Localization of estrogen receptors-alpha and-beta and androgen receptor in the human growth plate at different pubertal stages. J Endocrinol. 2003;177(2):319–26.PubMedCrossRefGoogle Scholar
  55. 55.
    Wang K, Shi D, Sun L, Jiang X, Lü Y, Dai J, et al. Association of estrogen receptor alpha gene polymorphisms with bone mineral density: a meta-analysis. Chin Med J. 2012;125(14):2589–97.PubMedGoogle Scholar
  56. 56.
    Grumbach MM, Auchus RJ. Estrogen: consequences and implications of human mutations in synthesis and action. J Clin Endocrinol Metab. 1999;84(12):4677–94.PubMedGoogle Scholar
  57. 57.
    Bilezikian JP, Morishima A, Bell J, Grumbach MM. Increased bone mass as a result of estrogen therapy in a man with aromatase deficiency. N Engl J Med. 1998;339(9):599–603.PubMedCrossRefGoogle Scholar
  58. 58.
    Fendri K, Patten S, Zaouter C, Parent S, Kaufman G, Labelle H, et al. Recent advances in the study of candidate genes for adolescent idiopathic scoliosis. Stud Health Technol Inform. 2010;158:3–7.PubMedGoogle Scholar
  59. 59.
    Inoue M, Minami S, Nakata Y, Kitahara H, Otsuka Y, Isobe K, et al. Association between estrogen receptor gene polymorphisms and curve severity of idiopathic scoliosis. Spine. 2002;27(21):2357–62.PubMedCrossRefGoogle Scholar
  60. 60.
    Wu J, Qiu Y, Zhang L, Sun Q, Qiu X, He Y. Association of estrogen receptor gene polymorphisms with susceptibility to adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2006;31(10):1131–6.CrossRefGoogle Scholar
  61. 61.
    Tang NL-S, Yeung H-Y, Lee K-M, Hung VW-Y, Cheung CS-K, Ng BK-W, et al. A relook into the association of the estrogen receptor α gene (PvuII, XbaI) and adolescent idiopathic scoliosis: a study of 540 Chinese cases. Spine. 2006;31(21):2463–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Zhang HQ, Lu SJ, Tang MX, Chen LQ, Liu SH, Guo CF, et al. Association of estrogen receptor beta gene polymorphisms with susceptibility to adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2009;34(8):760–4.CrossRefGoogle Scholar
  63. 63.
    Zhao D, Qiu GX, Wang YP, Zhang JG, Shen JX, Wu ZH. Association between adolescent idiopathic scoliosis with double curve and polymorphisms of calmodulin1 gene/estrogen receptor-α gene. Orthop Surg. 2009;1(3):222–30.PubMedCrossRefGoogle Scholar
  64. 64.
    Takahashi Y, Matsumoto M, Karasugi T, Watanabe K, Chiba K, Kawakami N, et al. Replication study of the association between adolescent idiopathic scoliosis and two estrogen receptor genes. J Orthop Res. 2011;29(6):834–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Xu L, Qiu X, Sun X, Mao S, Liu Z, Qiao J, et al. Potential genetic markers predicting the outcome of brace treatment in patients with adolescent idiopathic scoliosis. Eur Spine J. 2011;20(10):1757–64.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Peng Y, Liang G, Pei Y, Ye W, Liang A, Su P. Genomic polymorphisms of G-protein estrogen receptor 1 are associated with severity of adolescent idiopathic scoliosis. Int Orthop. 2012;36(3):671–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Ogura Y, Takahashi Y, Kou I, Nakajima M, Kono K, Kawakami N, et al. A replication study for association of 5 single nucleotide polymorphisms with curve progression of adolescent idiopathic scoliosis in Japanese patients. Spine (Phila Pa 1976). 2013;38(7):571–5.CrossRefGoogle Scholar
  68. 68.
    Janusz P, Kotwicki T, Andrusiewicz M, Kotwicka M. XbaI and PvuII polymorphisms of estrogen receptor 1 gene in females with idiopathic scoliosis: no association with occurrence or clinical form. PLoS One. 2013;8(10):e76806.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Yang M, Li C, Li M. The estrogen receptor alpha gene (XbaI, PvuII) polymorphisms and susceptibility to idiopathic scoliosis: a meta-analysis. J Orthop Sci. 2014;19(5):713–21.PubMedCrossRefGoogle Scholar
  70. 70.
    Chen S, Zhao L, Roffey DM, Phan P, Wai EK. Association between the ESR1-351A> G single nucleotide polymorphism (rs9340799) and adolescent idiopathic scoliosis: a systematic review and meta-analysis. Eur Spine J. 2014;23(12):2586–93.PubMedCrossRefGoogle Scholar
  71. 71.
    Kotwicki T, Janusz P, Andrusiewicz M, Chmielewska M, Kotwicka M. Estrogen receptor 2 gene polymorphism in idiopathic scoliosis. Spine (Phila Pa 1976). 2014;39(26):E1599–607.CrossRefGoogle Scholar
  72. 72.
    Janusz P, Kotwicka M, Andrusiewicz M, Czaprowski D, Czubak J, Kotwicki T. Estrogen receptors genes polymorphisms and age at menarche in idiopathic scoliosis. BMC Musculoskelet Disord. 2014;15(1):383.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Liu Z, Tam EM, Sun GQ, Lam TP, Zhu ZZ, Sun X, et al. Abnormal leptin bioavailability in adolescent idiopathic scoliosis: an important new finding. Spine (Phila Pa 1976). 2012;37(7):599–604.CrossRefGoogle Scholar
  74. 74.
    Tam E, Yu F, Hung V, Liu Z, Liu KL, Ng BK, et al. Are volumetric bone mineral density and bone micro-architecture associated with leptin and soluble leptin receptor levels in adolescent idiopathic scoliosis?--A case-control study. PLoS One. 2014;9(2):e87939.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Qiu Y, Sun X, Qiu X, Li W, Zhu Z, Zhu F, et al. Decreased circulating leptin level and its association with body and bone mass in girls with adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2007;32(24):2703–10.CrossRefGoogle Scholar
  76. 76.
    Elisa M, Lee W, Cheuk K-Y, Lam T-P, Ng BK, Lee SK, et al. Morphological and bone strength indices in girls with adolescent idiopathic scoliosis and their correlations with leptin and soluble leptin receptor. Scoliosis. 2015;10(Suppl 1):O13.Google Scholar
  77. 77.
    Tam EM, Yeung K-H, Tang S, Lam T-P, Ng BK, Lee SK, et al. Abnormal functional responses of osteoblasts to leptin in adolescent idiopathic scoliosis. Scoliosis. 2015;10(Suppl 1):O6.PubMedCentralCrossRefGoogle Scholar
  78. 78.
    Liang G, Gao W, Liang A, Ye W, Peng Y, Zhang L, et al. Normal leptin expression, lower adipogenic ability, decreased leptin receptor and hyposensitivity to leptin in adolescent idiopathic scoliosis. PLoS One. 2012;7(5):e36648.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Burwell RG, Aujla RK, Grevitt MP, Dangerfield PH, Moulton A, Randell TL, et al. Pathogenesis of adolescent idiopathic scoliosis in girls-a double neuro-osseous theory involving disharmony between two nervous systems, somatic and autonomic expressed in the spine and trunk: possible dependency on sympathetic nervous system and hormones with implications for medical therapy. Scoliosis. 2009;4(1):24.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Canpolat S, Sandal S, Yilmaz B, Yasar A, Kutlu S, Baydas G, et al. Effects of pinealectomy and exogenous melatonin on serum leptin levels in male rat. Eur J Pharmacol. 2001;428(1):145–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Baltaci A, Mogulkoc R. Pinealectomy and melatonin administration in rats: their effects on plasma leptin levels and relationship with zinc. Acta Biol Hung. 2007;58(4):335–43.PubMedCrossRefGoogle Scholar
  82. 82.
    Alonso-Vale MI, Andreotti S, Peres SB, Anhe GF, das Neves Borges-Silva C, Neto JC, et al. Melatonin enhances leptin expression by rat adipocytes in the presence of insulin. Am J Physiol Endocrinol Metab. 2005;288(4):E805–12.PubMedCrossRefGoogle Scholar
  83. 83.
    Azeddine B, Letellier K, Wang da S, Moldovan F, Moreau A. Molecular determinants of melatonin signaling dysfunction in adolescent idiopathic scoliosis. Clin Orthop Relat Res. 2007;462:45–52.PubMedCrossRefGoogle Scholar
  84. 84.
    Akoume M-Y, Azeddine B, Turgeon I, Franco A, Labelle H, Poitras B, et al. Cell-based screening test for idiopathic scoliosis using cellular dielectric spectroscopy. Spine. 2010;35(13):E601–E8.PubMedCrossRefGoogle Scholar
  85. 85.
    Sakata I, Sakai T. Ghrelin cells in the gastrointestinal tract. Int J Pept. 2010;2010:945056.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Maccarinelli G, Sibilia V, Torsello A, Raimondo F, Pitto M, Giustina A, et al. Ghrelin regulates proliferation and differentiation of osteoblastic cells. J Endocrinol. 2005;184(1):249–56.PubMedCrossRefGoogle Scholar
  87. 87.
    Gennero I, Conte-Auriol F, Mus M, Molinas-Cazals C, Accadbled F, Tauber M, et al. Fasting total ghrelin levels are increased in patients with adolescent idiopathic scoliosis. Bone. 2013;2:122.Google Scholar
  88. 88.
    Brzezinski A. Melatonin in humans. N Engl J Med. 1997;336(3):186–95.PubMedCrossRefGoogle Scholar
  89. 89.
    Grivas TB, Savvidou OD. Melatonin the “light of night” in human biology and adolescent idiopathic scoliosis. Scoliosis. 2007;2(6):1–14.Google Scholar
  90. 90.
    Morgan PJ, Barrett P, Howell HE, Helliwell R. Melatonin receptors: localization, molecular pharmacology and physiological significance. Neurochem Int. 1994;24(2):101–46.PubMedCrossRefGoogle Scholar
  91. 91.
    Arendt J. Melatonin and the pineal gland: influence on mammalian seasonal and circadian physiology. Rev Reprod. 1998;3(1):13–22.PubMedCrossRefGoogle Scholar
  92. 92.
    Reppert SM, Godson C, Mahle CD, Weaver DR, Slaugenhaupt SA, Gusella JF. Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel1b melatonin receptor. Proc Natl Acad Sci. 1995;92(19):8734–8.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Thillard MJ. Vertebral column deformities following epiphysectomy in the chick. C R Hebd Seances Acad Sci. 1959;248(8):1238–40.PubMedGoogle Scholar
  94. 94.
    Dubousset J, Queneau P, Thillard M. Experimental scoliosis induced by pineal and diencephalic lesions in young chickens: its relation with clinical findings. Orthop Trans. 1983;7(7):4.Google Scholar
  95. 95.
    Machida M, Dubousset J, Imamura Y, Iwaya T, Yamada T, Kimura J. An experimental study in chickens for the pathogenesis of idiopathic scoliosis. Spine. 1993;18(12):1609–15.PubMedCrossRefGoogle Scholar
  96. 96.
    Machida M, Dubousset J, Imamura Y, Iwaya T, Yamada T, Kimura J. Role of melatonin deficiency in the development of scoliosis in pinealectomised chickens. J Bone Joint Surg Br. 1995;77(1):134–8.PubMedCrossRefGoogle Scholar
  97. 97.
    Acaroglu E, Bobe R, Enouf J, Marcucio R, Moldovan F, Moreau A. The metabolic basis of adolescent idiopathic scoliosis: 2011 report of the “metabolic” workgroup of the Fondation Yves Cotrel. Eur Spine J. 2012;21(6):1033–42.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Machida M, Miyashita Y, Murai I, Dubousset J, Yamada T, Kimura J. Role of serotonin for scoliotic deformity in pinealectomized chicken. Spine. 1997;22(12):1297–301.PubMedCrossRefGoogle Scholar
  99. 99.
    Machida M, Murai I, Miyashita Y, Dubousset J, Yamada T, Kimura J. Pathogenesis of idiopathic scoliosis. Experimental study in rats. Spine (Phila Pa 1976). 1999;24(19):1985–9.CrossRefGoogle Scholar
  100. 100.
    Machida M, Dubousset J, Yamada T, Kimura J, Saito M, Shiraishi T, et al. Experimental scoliosis in melatonin-deficient C57BL/6J mice without pinealectomy. J Pineal Res. 2006;41(1):1–7.PubMedCrossRefGoogle Scholar
  101. 101.
    Machida M, Dubousset J, Yamada T, Kimura J. Serum melatonin levels in adolescent idiopathic scoliosis prediction and prevention for curve progression—a prospective study. J Pineal Res. 2009;46(3):344–8.PubMedCrossRefGoogle Scholar
  102. 102.
    Bagnall K, Raso J, Moreau M, Mahood J, Wang X, Beuerlein M. The development of scoliosis following pinealectomy in young chickens is not the result of an artifact of the surgical. Res Spinal Deform. 2002;3:3.Google Scholar
  103. 103.
    Turgut M, Yenisey C, Uysal A, Bozkurt M, Yurtseven ME. The effects of pineal gland transplantation on the production of spinal deformity and serum melatonin level following pinealectomy in the chicken. Eur Spine J. 2003;12(5):487–94.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Turhan E, Acaroglu E, Bozkurt G, Alanay A, Yazici M, Surat A. Unilateral enucleation affects the laterality but not the incidence of scoliosis in pinealectomized chicken. Spine. 2006;31(2):133–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Bagnall K, Raso VJ, Moreau M, Mahood J, Wang X, Zhao J. The effects of melatonin therapy on the development of scoliosis after pinealectomy in the chicken. J Bone Joint Surg Am. 1999;81(2):191–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Bagnall KM, Beuerlein M, Johnson P, Wilson J, Raso VJ, Moreau M. Pineal transplantation after pinealectomy in young chickens has no effect on the development of scoliosis. Spine. 2001;26(9):1022–7.PubMedCrossRefGoogle Scholar
  107. 107.
    Wang X, Moreau M, Raso VJ, Zhao J, Jiang H, Mahood J, et al. Changes in serum melatonin levels in response to pinealectomy in the chicken and its correlation with development of scoliosis. Spine (Phila Pa 1976). 1998;23(22):2377–81. discussion 82CrossRefGoogle Scholar
  108. 108.
    Dede O, Akel I, Demirkiran G, Yalcin N, Marcucio R, Acaroglu E. Is decreased bone mineral density associated with development of scoliosis? A bipedal osteopenic rat model. Scoliosis. 2011;6(1):24.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Cheung KM, Wang T, Poon AM, Carl A, Tranmer B, Hu Y, et al. The effect of pinealectomy on scoliosis development in young nonhuman primates. Spine (Phila Pa 1976). 2005;30(18):2009–13.CrossRefGoogle Scholar
  110. 110.
    Bagnall KM, Raso VJ, Hill DL, Moreau M, Mahood JK, Jiang H, et al. Melatonin levels in idiopathic scoliosis: diurnal and nocturnal serum melatonin levels in girls with adolescent idiopathic scoliosis. Spine. 1996;21(17):1974–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Goultidis TT, Papavasiliou KA, Petropoulos AS, Philippopoulos A, Kapetanos GA. Higher levels of melatonin in early stages of adolescent idiopathic scoliosis: toward a new scenario. J Pediatr Orthop. 2014;34(8):768–73.PubMedCrossRefGoogle Scholar
  112. 112.
    Girardo M, Bettini N, Dema E, Cervellati S. The role of melatonin in the pathogenesis of adolescent idiopathic scoliosis (AIS). Eur Spine J. 2011;20(Suppl 1):S68–74.PubMedCrossRefGoogle Scholar
  113. 113.
    Day GA, McPhee IB, Tuffley J, Tomlinson F, Chaseling R, Kellie S, et al. Idiopathic scoliosis and pineal lesions in Australian children. J Orthop Surg (Hong Kong). 2007;15(3):327–33.CrossRefGoogle Scholar
  114. 114.
    Qiu Y, Wu L, Wang B, Yu Y, Zhu Z. Asymmetric expression of melatonin receptor mRNA in bilateral paravertebral muscles in adolescent idiopathic scoliosis. Spine. 2007;32(6):667–72.PubMedCrossRefGoogle Scholar
  115. 115.
    Yim AP-Y, Yeung H-Y, Sun G, Lee K-M, Ng T-B, Lam T-P, et al. Abnormal skeletal growth in adolescent idiopathic scoliosis is associated with abnormal quantitative expression of melatonin receptor, mt2. Int J Mol Sci. 2013;14(3):6345–58.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Wang H, Wu Z, Zhuang Q, Fei Q, Zhang J, Liu Y, et al. Association study of tryptophan hydroxylase 1 and arylalkylamine N-acetyltransferase polymorphisms with adolescent idiopathic scoliosis in Han Chinese. Spine. 2008;33(20):2199–203.PubMedCrossRefGoogle Scholar
  117. 117.
    Qiu XS, Tang NL, Yeung HY, Lee K-M, Hung VW, Ng BK, et al. Melatonin receptor 1B (MTNR1B) gene polymorphism is associated with the occurrence of adolescent idiopathic scoliosis. Spine. 2007;32(16):1748–53.PubMedCrossRefGoogle Scholar
  118. 118.
    Qiu X-S, Tang NL, Yeung H-Y, Cheng JC, Qiu Y. Lack of association between the promoter polymorphism of the MTNR1A gene and adolescent idiopathic scoliosis. Spine. 2008;33(20):2204–7.PubMedCrossRefGoogle Scholar
  119. 119.
    Yang M, Wei X, Yang W, Li Y, Ni H, Zhao Y, et al. The polymorphisms of melatonin receptor 1B gene (MTNR1B) (rs4753426 and rs10830963) and susceptibility to adolescent idiopathic scoliosis: a meta-analysis. J Orthop Sci. 2015;20(4):593–600.PubMedCrossRefGoogle Scholar
  120. 120.
    Wang WW, Man GC, Wong JH, Ng TB, Lee KM, Ng BK, et al. Abnormal response of the proliferation and differentiation of growth plate chondrocytes to melatonin in adolescent idiopathic scoliosis. Int J Mol Sci. 2014;15(9):17100–14.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Hamm HE, Gilchrist A. Heterotrimeric G proteins. Curr Opin Cell Biol. 1996;8(2):189–96.PubMedCrossRefGoogle Scholar
  122. 122.
    Gilman AG. G Proteins and dual control of adenylate cyclase. Cell. 1984;36(3):577–9.PubMedCrossRefGoogle Scholar
  123. 123.
    Verdonk E, Johnson K, McGuinness R, Leung G, Chen YW, Tang HR, et al. Cellular dielectric spectroscopy: a label-free comprehensive platform for functional evaluation of endogenous receptors. Assay Drug Dev Technol. 2006;4(5):609–19.PubMedCrossRefGoogle Scholar
  124. 124.
    Akoume M-Y, Franco A, Moreau A. Cell-based assay protocol for the prognostic prediction of idiopathic scoliosis using cellular dielectric spectroscopy. J Vis Exp. 2013;80:50768.Google Scholar
  125. 125.
    Julien C, Gorman KF, Akoume M-Y, Moreau A. Towards a comprehensive diagnostic assay for scoliosis. Pers Med. 2013;10(1):97–103.CrossRefGoogle Scholar
  126. 126.
    Denhardt DT, Noda M, O’Regan AW, Pavlin D, Berman JS. Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J Clin Investig. 2001;107(9):1055.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Weintraub AS, Schnapp LM, Lin X, Taubman MB. Osteopontin deficiency in rat vascular smooth muscle cells is associated with an inability to adhere to collagen and increased apoptosis. Lab Investig. 2000;80(11):1603–15.PubMedCrossRefGoogle Scholar
  128. 128.
    Mazzali M, Kipari T, Ophascharoensuk V, Wesson J, Johnson R, Hughes J. Osteopontin—a molecule for all seasons. Int J Med. 2002;95(1):3–13.Google Scholar
  129. 129.
    Standal T, Borset M, Sundan A. Role of osteopontin in adhesion, migration, cell survival and bone remodeling. Exp Oncol. 2004;26(3):179–84.PubMedGoogle Scholar
  130. 130.
    Terai K, Takano-Yamamoto T, Ohba Y, Hiura K, Sugimoto M, Sato M, et al. Role of osteopontin in bone remodeling caused by mechanical stress. J Bone Miner Res. 1999;14(6):839–49.PubMedCrossRefGoogle Scholar
  131. 131.
    Moreau A, Franco A, Azeddine B, Rompré PH, Gagnon M-HR, Bagnall KM, et al. High circulating levels of osteopontin are associated with idiopathic scoliosis onset and spinal deformity progression 7. In: Aubin C-E, Stokes IAF, Labelle H, Moreau A, editors. Research into spinal deformities. Amsterdam: IOS Press BV; 2010.Google Scholar
  132. 132.
    Oyama J, Murai I, Kanazawa K, Machida M. Bipedal ambulation induces experimental scoliosis in C57BL/6J mice with reduced plasma and pineal melatonin levels. J Pineal Res. 2006;40(3):219–24.PubMedCrossRefGoogle Scholar
  133. 133.
    Yadav MC, Huesa C, Narisawa S, Hoylaerts MF, Moreau A, Farquharson C, et al. Ablation of osteopontin improves the skeletal phenotype of phospho1−/− mice. J Bone Miner Res. 2014;29(11):2369–81.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Xie N, Li M, Wu T, Liu J, Wang B, Tang F. Does elevated osteopontin level play an important role in the development of scoliosis in bipedal mice? Spine J. 2015;15(7):1660–4.PubMedCrossRefGoogle Scholar
  135. 135.
    Stevens FC. Calmodulin: an introduction. Can J Biochem Cell Biol. 1983;61(8):906–10.PubMedCrossRefGoogle Scholar
  136. 136.
    Chin D, Means AR. Calmodulin: a prototypical calcium sensor. Trends Cell Biol. 2000;10(8):322–8.PubMedCrossRefGoogle Scholar
  137. 137.
    Yarom R, Muhlrad A, Hodges S, Robin G. Platelet pathology in patients with idiopathic scoliosis: ultrastructural morphometry, aggregations, x-ray spectrometry, and biochemical analysis. Lab Investig. 1980;43(3):208–16.PubMedGoogle Scholar
  138. 138.
    Peleg I, Eldor A, Kahane I, Muhlrad A, Liebergall M, Floman Y. Altered structural and functional properties of myosins, from platelets of idiopathic scoliosis patients. J Orthop Res. 1989;7(2):260–5.PubMedCrossRefGoogle Scholar
  139. 139.
    Muhlrad A, Yarom R. Contractile protein studies on platelets from patients with idiopathic scoliosis. Pathophysiol Haemost Thromb. 1982;11(3):154–60.CrossRefGoogle Scholar
  140. 140.
    Sabato S, Rotman A, Robin GC, Floman Y. Platelet aggregation abnormalities in idiopathic scoliosis. J Pediatr Orthop. 1985;5(5):558–63.PubMedCrossRefGoogle Scholar
  141. 141.
    Bredoux R, Corvazier E, Dally S, Chaabane C, Bobe R, Raies A, et al. Human platelet Ca2+−ATPases: new markers of cell differentiation as illustrated in idiopathic scoliosis. Platelets. 2006;17(6):421–33.PubMedCrossRefGoogle Scholar
  142. 142.
    Kahmann RD, Donohue JM, Bradford DS, White JG, Rao GH. Platelet function in adolescent idiopathic scoliosis. Spine. 1992;17(2):145–8.PubMedCrossRefGoogle Scholar
  143. 143.
    Suk S, Kim I, Lee C, Koh Y, Yeom J. A study on platelet function in idiopathic scoliosis. Orthopedics. 1991;14(10):1079–83.PubMedGoogle Scholar
  144. 144.
    Zhao Y, Qiu GX. Expression of calmodulin and nNOS in the paraspinal muscles in idiopathic scoliosis. Zhonghua Yi Xue Za Zhi. 2004;84(16):1358–61.PubMedGoogle Scholar
  145. 145.
    Acaroglu E, Akel I, Alanay A, Yazici M, Marcucio R. Comparison of the melatonin and calmodulin in paravertebral muscle and platelets of patients with or without adolescent idiopathic scoliosis. Spine. 2009;34(18):E659–E63.PubMedCrossRefGoogle Scholar
  146. 146.
    Zhao D, Qiu GX, Wang YP, Zhang JG, Shen JX, Wu ZH, et al. Association of calmodulin1 gene polymorphisms with susceptibility to adolescent idiopathic scoliosis. Orthop Surg. 2009;1(1):58–65.PubMedCrossRefGoogle Scholar
  147. 147.
    Zhang Y, Gu Z, Qiu G. The association study of calmodulin 1 gene polymorphisms with susceptibility to adolescent idiopathic scoliosis. Biomed Res Int. 2014;2014:168106.PubMedPubMedCentralGoogle Scholar
  148. 148.
    Xia Z, Storm DR. Calmodulin-regulated adenylyl cyclases and neuromodulation. Curr Opin Neurobiol. 1997;7(3):391–6.PubMedCrossRefGoogle Scholar
  149. 149.
    Hardeland R. Melatonin, hormone of darkness and more–occurrence, control mechanisms, actions and bioactive metabolites. Cell Mol Life Sci. 2008;65(13):2001–18.PubMedCrossRefGoogle Scholar
  150. 150.
    Benítez-King G. Melatonin as a cytoskeletal modulator: implications for cell physiology and disease. J Pineal Res. 2006;40(1):1–9.PubMedCrossRefGoogle Scholar
  151. 151.
    Porter RW. The pathogenesis of idiopathic scoliosis: uncoupled neuro-osseous growth? Eur Spine J. 2001;10(6):473–81.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Boyce BF, Xing L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther. 2007;9(1):S1.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Suh KT, Lee S-S, Hwang SH, Kim S-J, Lee JS. Elevated soluble receptor activator of nuclear factor-κB ligand and reduced bone mineral density in patients with adolescent idiopathic scoliosis. Eur Spine J. 2007;16(10):1563–9.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Eun I-S, Park WW, Suh KT, Kim JI, Lee JS. Association between osteoprotegerin gene polymorphism and bone mineral density in patients with adolescent idiopathic scoliosis. Eur Spine J. 2009;18(12):1936–40.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Zhou S, Wang W, Zhu Z, Sun X, Zhu F, Yu Y, et al. Increased expression of receptor activator of nuclear factor-κB ligand in osteoblasts from adolescent idiopathic scoliosis patients with low bone mineral density. J Huazhong Univ Sci Technol. 2012;32:686–90.CrossRefGoogle Scholar
  156. 156.
    Kulis A, Gozdzialska A, Drag J, Jaskiewicz J, Knapik-Czajka M, Lipik E, et al. Participation of sex hormones in multifactorial pathogenesis of adolescent idiopathic scoliosis. Int Orthop. 2015;39(6):1227–36.PubMedCrossRefGoogle Scholar
  157. 157.
    Chiru M. Adolescent idiopathic scoliosis and osteopenia. Maedica (Buchar). 2011;6(1):17–22.Google Scholar
  158. 158.
    Lu L, Dai Z, Lv G, Kang Y, Jiang Y. A novel therapeutic strategy for adolescent idiopathic scoliosis based on osteoporotic concept. Med Hypotheses. 2013;80(6):773–5.PubMedCrossRefGoogle Scholar
  159. 159.
    Ram VS, Parthiban SU, Mithradas N, Prabhakar R. Bone biomarkers in periodontal disease: a review article. J Clin Diagn Res. 2015;9(1):ZE07–10.PubMedPubMedCentralGoogle Scholar
  160. 160.
    Wagener R, Ehlen HW, Ko YP, Kobbe B, Mann HH, Sengle G, et al. The matrilins—adaptor proteins in the extracellular matrix. FEBS Lett. 2005;579(15):3323–9.PubMedCrossRefGoogle Scholar
  161. 161.
    Lowe TG, Edgar M, Margulies JY, Miller NH, Raso VJ, Reinker KA, et al. Etiology of idiopathic scoliosis: current trends in research. J Bone Joint Surg. 2000;82(8):1157.PubMedCrossRefGoogle Scholar
  162. 162.
    Montanaro L, Parisini P, Greggi T, Di Silvestre M, Campoccia D, Rizzi S, et al. Evidence of a linkage between matrilin-1 gene (MATN1) and idiopathic scoliosis. Scoliosis. 2006;1(1):21.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Chen Z, Tang NL, Cao X, Qiao D, Yi L, Cheng JC, et al. Promoter polymorphism of matrilin-1 gene predisposes to adolescent idiopathic scoliosis in a Chinese population. Eur J Hum Genet. 2009;17(4):525–32.PubMedCrossRefGoogle Scholar
  164. 164.
    Bae JW, Cho C-H, Min W-K, Kim U-K. Associations between matrilin-1 gene polymorphisms and adolescent idiopathic scoliosis curve patterns in a Korean population. Mol Biol Rep. 2012;39(5):5561–7.PubMedCrossRefGoogle Scholar
  165. 165.
    Yilmaz H, Zateri C, Uludag A, Bakar C, Kosar S, Ozdemir O. Single-nucleotide polymorphism in Turkish patients with adolescent idiopathic scoliosis: curve progression is not related with MATN-1, LCT C/T-13910, and VDR BsmI. J Orthop Res. 2012;30(9):1459–63.PubMedCrossRefGoogle Scholar
  166. 166.
    Zhang H, Zhao S, Zhao Z, Tang L, Guo Q, Liu S, et al. The association of rs1149048 polymorphism in matrilin-1(MATN1) gene with adolescent idiopathic scoliosis susceptibility: a meta-analysis. Mol Biol Rep. 2014;41(4):2543–9.PubMedCrossRefGoogle Scholar
  167. 167.
    Wang B, Chen ZJ, Qiu Y, Liu WJ. Decreased circulating matrilin-1 levels in adolescent idiopathic scoliosis. Zhonghua Wai Ke Za Zhi. 2009;47(21):1638–41.PubMedGoogle Scholar
  168. 168.
    Posey KL, Hecht JT. The role of cartilage oligomeric matrix protein (COMP) in skeletal disease. Curr Drug Targets. 2008;9(10):869–77.PubMedCrossRefGoogle Scholar
  169. 169.
    Xu K, Zhang Y, Ilalov K, Carlson CS, Feng JQ, Di Cesare PE, et al. Cartilage oligomeric matrix protein associates with granulin-epithelin precursor (GEP) and potentiates GEP-stimulated chondrocyte proliferation. J Biol Chem. 2007;282(15):11347–55.PubMedCrossRefGoogle Scholar
  170. 170.
    Ishii Y, Thomas AO, Guo XE, Hung CT, Chen FH. Localization and distribution of cartilage oligomeric matrix protein in the rat intervertebral disc. Spine (Phila Pa 1976). 2006;31(14):1539–46.CrossRefGoogle Scholar
  171. 171.
    Di Cesare PE, Fang C, Leslie MP, Tulli H, Perris R, Carlson CS. Expression of cartilage oligomeric matrix protein (COMP) by embryonic and adult osteoblasts. J Orthop Res. 2000;18(5):713–20.PubMedCrossRefGoogle Scholar
  172. 172.
    Kong L, Tian Q, Guo F, Mucignat MT, Perris R, Sercu S, et al. Interaction between cartilage oligomeric matrix protein and extracellular matrix protein 1 mediates endochondral bone growth. Matrix Biol. 2010;29(4):276–86.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Fendri K, Moldovan F. Potential role of COMP as a biomarker for adolescent idiopathic scoliosis. Med Hypotheses. 2011;76(5):762–3.PubMedCrossRefGoogle Scholar
  174. 174.
    Hecht JT, Nelson LD, Crowder E, Wang Y, Elder FF, Harrison WR, et al. Mutations in exon 17B of cartilage oligomeric matrix protein (COMP) cause pseudoachondroplasia. Nat Genet. 1995;10(3):325–9.PubMedCrossRefGoogle Scholar
  175. 175.
    Briggs M, Hoffman S, King L, Olsen A, Mohrenweiser H, Leroy J, et al. Pseudoachondroplasia and multiple epiphyseal dysplasia due to mutations in the cartilage oligomeric matrix protein gene. Nat Genet. 1995;10(3):330–6.PubMedCrossRefGoogle Scholar
  176. 176.
    Hecht JT, Makitie O, Hayes E, Haynes R, Susic M, Montufar-Solis D, et al. Chondrocyte cell death and intracellular distribution of COMP and type IX collagen in the pseudoachondroplasia growth plate. J Orthop Res. 2004;22(4):759–67.PubMedCrossRefGoogle Scholar
  177. 177.
    Bjornhart B, Juul A, Nielsen S, Zak M, Svenningsen P, Muller K. Cartilage oligomeric matrix protein in patients with juvenile idiopathic arthritis: relation to growth and disease activity. J Rheumatol. 2009;36(8):1749–54.PubMedCrossRefGoogle Scholar
  178. 178.
    Gerdhem P, Topalis C, Grauers A, Stubendorff J, Ohlin A, Karlsson K. Serum level of cartilage oligomeric matrix protein is lower in children with idiopathic scoliosis than in non-scoliotic controls. Eur Spine J. 2015;24(2):256–61.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2018

Authors and Affiliations

  1. 1.Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal DiseasesSainte-Justine University Hospital Research CenterMontrealCanada
  2. 2.Faculty of Medicine, Department of Biomedical SciencesUniversité de MontréalMontrealCanada
  3. 3.Faculty of Dentistry, Department of StomatologyUniversité de MontréalMontrealCanada
  4. 4.Faculty of Medicine, Department of Biochemistry and Molecular MedicineUniversité de MontréalMontrealCanada

Personalised recommendations