Advertisement

The Genetic Architecture of Adolescent Idiopathic Scoliosis

  • Anas M. Khanshour
  • Carol A. WiseEmail author
Chapter
  • 745 Downloads

Abstract

Adolescent idiopathic scoliosis (AIS) is the most common pediatric spinal deformity, affecting 2–3% of school-age children worldwide. This disease is typically classified by age at onset, with the great majority occurring around the time of the adolescent growth spurt, the so-called AIS. AIS can progress rapidly, threatening pain, deformity, and pulmonary dysfunction. Heritability of AIS is high, and population studies have consistently found that AIS is best explained by a polygenic inheritance model, in which many genetic risk factors combine to cause the disease. Population studies have associated AIS with genetic markers near interesting candidate genes, including the homeobox transcription factor LBX1, the G protein-coupled receptor GPR126, the paired box transcription factors PAX1 and PAX3, as well as the SRY-box SOX9. Moreover, gene targeting in zebrafish and mouse model systems have identified candidate genes, which offer an exciting new area of investigation into molecular mechanisms of AIS. AIS candidate genes thus far identified function in muscle, nerve, and cartilage specification in early development, suggesting neuromuscular and/or cartilage disease origins, but their role in later human development and growth of the axial spine is an unexplored area of developmental biology. Continued gene discovery efforts, aided by next-generation genomic platforms, are a priority for the field and will provide the tools for biological investigations of AIS pathogenesis.

Keywords

Idiopathic scoliosis Genetics Next-generation genomics Neuromuscular system Musculoskeletal disorder Animal modeling 

Notes

Acknowledgments

We thank Drs. Courtney Karner and Ryan Gray for kindly contributing images of genetically engineered mice. We thank Stuart Almond from the Media Department at Texas Scottish Rite Hospital for Children and Benjamin Dupree for helping in Fig. 3.3. We also thank patients, other individuals, and families who have participated in the studies described here.

References

  1. 1.
    Tachdjian MO. Scoliosis. In: Herring J, editor. Tachdjian’s pediatric orthopaedics. 4th ed. Philadelphia, PA: WB Saunders; 2008.Google Scholar
  2. 2.
    Herring JA. Tachdjian’s pediatric orthopaedics. Philadelphia, PA: WB Saunders; 2008.Google Scholar
  3. 3.
    Hresko MT. Clinical practice. Idiopathic scoliosis in adolescents. N Engl J Med. 2013;368(9):834–41.  https://doi.org/10.1056/NEJMcp1209063.PubMedCrossRefGoogle Scholar
  4. 4.
    Akbarnia BA. Management themes in early onset scoliosis. J Bone Joint Surg Am. 2007;89(Suppl 1):42–54.  https://doi.org/10.2106/JBJS.F.01256.PubMedGoogle Scholar
  5. 5.
    Richards BS, Vitale MG. Screening for idiopathic scoliosis in adolescents. An information statement. J Bone Joint Surg Am. 2008;90(1):195–8.  https://doi.org/10.2106/jbjs.g.01276.PubMedCrossRefGoogle Scholar
  6. 6.
    Katz DE, Herring JA, Browne RH, Kelly DM, Birch JG. Brace wear control of curve progression in adolescent idiopathic scoliosis. J Bone Joint Surg Am. 2010;92(6):1343–52.  https://doi.org/10.2106/JBJS.I.01142.PubMedCrossRefGoogle Scholar
  7. 7.
    Lonstein JE, Carlson JM. The prediction of curve progression in untreated idiopathic scoliosis during growth. J Bone Joint Surg Am. 1984;66(7):1061–71.PubMedCrossRefGoogle Scholar
  8. 8.
    Akbarnia GMB. Idiopathic scoliosis: infantile and juvenile. In: Thompson BAAMYGH, editor. The growing spine: management of spinal disorders in young children. New York, NY: Springer-Verlag; 2011. p. 199–212.Google Scholar
  9. 9.
    Karol LAM, Johnston CE II, Browne RH, Madison M. Progression of the curve in boys who have idiopathic scoliosis. J Bone Joint Surg. 1993;75-A(12):1804–10.CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Shands AR Jr, Eisberg HB. The incidence of scoliosis in the state of Delaware; a study of 50,000 minifilms of the chest made during a survey for tuberculosis. J Bone Joint Surg Am. 1955;37-A(6):1243–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Rogala EJDD, Gurr J. Scoliosis: incidence and naturel history A prospective epidemiological study. J Bone Joint Surg Am. 1978;60(2):173–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Willner S, Uden A. A prospective prevalence study of scoliosis in Southern Sweden. Acta Orthop Scand. 1982;53(2):233–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Ohtsuka Y, Yamagata M, Arai S, Kitahara H, Minami S. School screening for scoliosis by the Chiba University Medical School screening program. Results of 1.24 million students over an 8-year period. Spine (Phila Pa 1976). 1988;13(11):1251–7.CrossRefGoogle Scholar
  15. 15.
    Soucacos PN, Soucacos PK, Zacharis KC, Beris AE, Xenakis TA. School-screening for scoliosis. A prospective epidemiological study in northwestern and central Greece. J Bone Joint Surg Am. 1997;79(10):1498–503.PubMedCrossRefGoogle Scholar
  16. 16.
    Dickson RA. Scoliosis in the community. Br Med J. 1983;286(6365):615–8.CrossRefGoogle Scholar
  17. 17.
    Horton WA. Common Skeletal deformities. In: Rimoin DL, JMC REP, Korf BR, editors. Emery and Rimoin’s principles and practice of medical genetics. 4th ed. London: Churchill Livingstone; 2002. p. 4236–44.Google Scholar
  18. 18.
    Sharma S, Wise C. Current understanding of genetic factors in idiopathic scoliosis. In: Dunwoodie KA, editor. The genetics and development of scoliosis. New York, NY: Springer; 2010. p. 167–90.Google Scholar
  19. 19.
    Kesling KL, Reinker KA. Scoliosis in twins: a meta-analysis of the literature and report of six cases. Spine. 1997;22(17):2009–15.PubMedCrossRefGoogle Scholar
  20. 20.
    Andersen MO, Thomsen K, Kyvik KO. Adolescent idiopathic scoliosis in twins: a population-based survey. Spine (Phila Pa 1976). 2007;32(8):927–30.  https://doi.org/10.1097/01.brs.0000259865.08984.00.CrossRefGoogle Scholar
  21. 21.
    Tang NL, Yeung HY, Hung VW, Di Liao C, Lam TP, Yeung HM, et al. Genetic epidemiology and heritability of AIS: A study of 415 Chinese female patients. J Orthop Res. 2012;30(9):1464–9.  https://doi.org/10.1002/jor.22090.PubMedCrossRefGoogle Scholar
  22. 22.
    Riseborough EJ, Wynne-Davies R. A genetic survey of idiopathic scoliosis in Boston, MA. J Bone Joint Surg Am. 1973;55(5):974–82.PubMedCrossRefGoogle Scholar
  23. 23.
    Ward K, Ogilvie J, Argyle V, Nelson L, Meade M, Braun J, et al. Polygenic inheritance of adolescent idiopathic scoliosis: a study of extended families in Utah. Am J Med Genet A. 2010;152A(5):1178–88.  https://doi.org/10.1002/ajmg.a.33145.PubMedCrossRefGoogle Scholar
  24. 24.
    Raggio CL, Giampietro PF, Dobrin S, Zhao C, Dorshorst D, Ghebranious N, et al. A novel locus for adolescent idiopathic scoliosis on chromosome 12p. J Orthop Res. 2009;27(10):1366–72.  https://doi.org/10.1002/jor.20885.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Carter CO, Evans KA. Inheritance of congenital pyloric stenosis. J Med Genet. 1969;6(3):233–54.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Kruse LM, Buchan JG, Gurnett CA, Dobbs MB. Polygenic threshold model with sex dimorphism in adolescent idiopathic scoliosis: the Carter effect. J Bone Joint Surg Am. 2012;94(16):1485–91.  https://doi.org/10.2106/JBJS.K.01450.PubMedCrossRefGoogle Scholar
  27. 27.
    Li Z, Tuteja G, Schug J, Kaestner KH. Foxa1 and Foxa2 are essential for sexual dimorphism in liver cancer. Cell. 2012;148(1–2):72–83.  https://doi.org/10.1016/j.cell.2011.11.026.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Sharma S, Londono D, Eckalbar WL, Gao X, Zhang D, Mauldin K, et al. A PAX1 enhancer locus is associated with susceptibility to idiopathic scoliosis in females. Nat Commun. 2015;6:6452.  https://doi.org/10.1038/ncomms7452.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Pyeritz RE. Common disorders of connective tissue. In: King RA, Motulsky AG, editors. Genetic basis of common diseases. Oxford: Oxford University Press; 2002. p. 638–45.Google Scholar
  30. 30.
    Machida M, Dubousset J, Imamura Y, Iwaya T, Yamada T, Kimura J. An experimental study in chickens for the pathogenesis of idiopathic scoliosis. Spine (Phila Pa 1976). 1993;18(12):1609–15.CrossRefGoogle Scholar
  31. 31.
    Machida M, Miyashita Y, Murai I, Dubousset J, Yamada T, Kimura J. Role of serotonin for scoliotic deformity in pinealectomized chicken. Spine (Phila Pa 1976). 1997;22(12):1297–301.CrossRefGoogle Scholar
  32. 32.
    Fjelldal PG, Grotmol S, Kryvi H, Gjerdet NR, Taranger GL, Hansen T, et al. Pinealectomy induces malformation of the spine and reduces the mechanical strength of the vertebrae in Atlantic salmon, Salmo salar. J Pineal Res. 2004;36(2):132–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Guo X, Chau WW, Hui-Chan CW, Cheung CS, Tsang WW, Cheng JC. Balance control in adolescents with idiopathic scoliosis and disturbed somatosensory function. Spine. 2006;31(14):E437–40.  https://doi.org/10.1097/01.brs.0000222048.47010.bf. 00007632-200606150-00029 [pii]PubMedCrossRefGoogle Scholar
  34. 34.
    Lonstein JE. Adolescent idiopathic scoliosis. Lancet. 1994;344(8934):1407–12. doi:S0140-6736(94)90572-X [pii]PubMedCrossRefGoogle Scholar
  35. 35.
    Mallau S, Bollini G, Jouve JL, Assaiante C. Locomotor skills and balance strategies in adolescents idiopathic scoliosis. Spine. 2007;32(1):E14–22.  https://doi.org/10.1097/01.brs.0000251069.58498.eb. 00007632-200701010-00026 [pii]PubMedCrossRefGoogle Scholar
  36. 36.
    Rousie D, Hache JC, Pellerin P, Deroubaix JP, Van Tichelen P, Berthoz A. Oculomotor, postural, and perceptual asymmetries associated with a common cause. Craniofacial asymmetries and asymmetries in vestibular organ anatomy. Ann N Y Acad Sci. 1999;871:439–46.PubMedCrossRefGoogle Scholar
  37. 37.
    Wiener-Vacher SR, Mazda K. Asymmetric otolith vestibulo-ocular responses in children with idiopathic scoliosis. J Pediatr. 1998;132(6):1028–32. doi:S0022347698002704 [pii]PubMedCrossRefGoogle Scholar
  38. 38.
    Fukuda T, Takeda S, Xu R, Ochi H, Sunamura S, Sato T, et al. Sema3A regulates bone-mass accrual through sensory innervations. Nature. 2013;497(7450):490–3.  https://doi.org/10.1038/nature12115.PubMedCrossRefGoogle Scholar
  39. 39.
    Cheng JC, Guo X, Sher AH. Persistent osteopenia in adolescent idiopathic scoliosis. A longitudinal follow up study. Spine (Phila Pa 1976). 1999;24(12):1218–22.CrossRefGoogle Scholar
  40. 40.
    Lee WT, Cheung CS, Tse YK, Guo X, Qin L, Lam TP, et al. Association of osteopenia with curve severity in adolescent idiopathic scoliosis: a study of 919 girls. Osteoporosis Int. 2005;16(12):1924–32.  https://doi.org/10.1007/s00198-005-1964-7.CrossRefGoogle Scholar
  41. 41.
    Hung VW, Qin L, Cheung CS, Lam TP, Ng BK, Tse YK, et al. Osteopenia: a new prognostic factor of curve progression in adolescent idiopathic scoliosis. J Bone Joint Surg Am. 2005;87(12):2709–16.  https://doi.org/10.2106/JBJS.D.02782.PubMedGoogle Scholar
  42. 42.
    Hadley-Miller N, Mims B, Milewicz DM. The potential role of the elastic fiber system in adolescent idiopathic scoliosis. J Bone Joint Surg Am. 1994;76(8):1193–206.PubMedCrossRefGoogle Scholar
  43. 43.
    Lowe TG, Edgar M, Margulies JY, Miller NH, Raso VJ, Reinker KA, et al. Etiology of idiopathic scoliosis: current trends in research. J Bone Joint Surg Am. 2000;82-A(8):1157–68.PubMedCrossRefGoogle Scholar
  44. 44.
    Lonstein JE. Adolescent Idiopathic scoliosis. Lancet. 1994;344:1407–12.PubMedCrossRefGoogle Scholar
  45. 45.
    Roberts S, Menage J, Eisenstein SM. The cartilage end-plate and intervertebral disc in scoliosis: calcification and other sequelae. J Orthop Res. 1993;11(5):747–57.  https://doi.org/10.1002/jor.1100110517.PubMedCrossRefGoogle Scholar
  46. 46.
    Karner CM, Long F, Solnica-Krezel L, Monk KR, Gray RS. Gpr126/Adgrg6 deletion in cartilage models idiopathic scoliosis and pectus excavatum in mice. Hum Mol Genet. 2015;24(15):4365–73.  https://doi.org/10.1093/hmg/ddv170.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Altshuler D, Daly MJ, Lander ES. Genetic mapping in human disease. Science. 2008;322(5903):881–8.  https://doi.org/10.1126/science.1156409.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Chan V, Fong GC, Luk KD, Yip B, Lee MK, Wong MS, et al. A genetic locus for adolescent idiopathic scoliosis linked to chromosome 19p13.3. Am J Hum Genet. 2002;71(2):401–6.  https://doi.org/10.1086/341607.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Salehi LB, Mangino M, De Serio S, De Cicco D, Capon F, Semprini S, et al. Assignment of a locus for autosomal dominant idiopathic scoliosis (IS) to human chromosome 17p11. Hum Genet. 2002;111(4–5):401–4.  https://doi.org/10.1007/s00439-002-0785-4.PubMedCrossRefGoogle Scholar
  50. 50.
    Ocaka L, Zhao C, Reed JA, Ebenezer ND, Brice G, Morley T, et al. Assignment of two loci for autosomal dominant adolescent idiopathic scoliosis to chromosomes 9q31.2-q34.2 and 17q25.3-qtel. J Med Genet. 2008;45(2):87–92.  https://doi.org/10.1136/jmg.2007.051896.PubMedCrossRefGoogle Scholar
  51. 51.
    Gao X, Gordon D, Zhang D, Browne R, Helms C, Gillum J, et al. CHD7 gene polymorphisms are associated with susceptibility to idiopathic scoliosis. Am J Hum Genet. 2007;80(5):957–65.  https://doi.org/10.1086/513571.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Miller NH, Justice CM, Marosy B, Doheny KF, Pugh E, Zhang J, et al. Identification of candidate regions for familial idiopathic scoliosis. Spine (Phila Pa 1976). 2005;30(10):1181–7. doi:00007632-200505150-00013 [pii]CrossRefGoogle Scholar
  53. 53.
    Vissers LE, van Ravenswaaij CM, Admiraal R, Hurst JA, de Vries BB, Janssen IM, et al. Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat Genet. 2004;36(9):955–7.  https://doi.org/10.1038/ng1407. ng1407 [pii]PubMedCrossRefGoogle Scholar
  54. 54.
    Doyle C, Blake K. Scoliosis in CHARGE: a prospective survey and two case reports. Am J Med Genet A. 2005;133A(3):340–3.  https://doi.org/10.1002/ajmg.a.30564.PubMedCrossRefGoogle Scholar
  55. 55.
    Edery P, Margaritte-Jeannin P, Biot B, Labalme A, Bernard JC, Chastang J, et al. New disease gene location and high genetic heterogeneity in idiopathic scoliosis. Eur J Hum Genet. 2011;19(8):865–9.  https://doi.org/10.1038/ejhg.2011.31.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Patten SA, Margaritte-Jeannin P, Bernard JC, Alix E, Labalme A, Besson A, et al. Functional variants of POC5 identified in patients with idiopathic scoliosis. J Clin Invest. 2015;125(3):1124–8.  https://doi.org/10.1172/JCI77262.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Baschal EE, Wethey CI, Swindle K, Baschal RM, Gowan K, Tang NL, et al. Exome sequencing identifies a rare HSPG2 variant associated with familial idiopathic scoliosis. G3. 2015;5(2):167–74.  https://doi.org/10.1534/g3.114.015669.CrossRefGoogle Scholar
  58. 58.
    Sharma S, Gao X, Londono D, Devroy SE, Mauldin KN, Frankel JT, et al. Genome-wide association studies of adolescent idiopathic scoliosis suggest candidate susceptibility genes. Hum Mol Genet. 2011;20(7):1456–66.  https://doi.org/10.1093/hmg/ddq571.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Takahashi Y, Kou I, Takahashi A, Johnson TA, Kono K, Kawakami N, et al. A genome-wide association study identifies common variants near LBX1 associated with adolescent idiopathic scoliosis. Nat Genet. 2011;43(12):1237–40.  https://doi.org/10.1038/ng.974.PubMedCrossRefGoogle Scholar
  60. 60.
    Miyake A, Kou I, Takahashi Y, Johnson TA, Ogura Y, Dai J, et al. Identification of a susceptibility locus for severe adolescent idiopathic scoliosis on chromosome 17q24.3. PLoS One. 2013;8(9):e72802.  https://doi.org/10.1371/journal.pone.0072802.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Kou I, Takahashi Y, Johnson TA, Takahashi A, Guo L, Dai J, et al. Genetic variants in GPR126 are associated with adolescent idiopathic scoliosis. Nat Genet. 2013.  https://doi.org/10.1038/ng.2639.
  62. 62.
    Zhu Z, Tang NL, Xu L, Qin X, Mao S, Song Y, et al. Genome-wide association study identifies new susceptibility loci for adolescent idiopathic scoliosis in Chinese girls. Nat Commun. 2015;6:8355.  https://doi.org/10.1038/ncomms9355.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Schork NJ, Murray SS, Frazer KA, Topol EJ. Common vs. rare allele hypotheses for complex diseases. Curr Opin Genet Dev. 2009;19(3):212–9.  https://doi.org/10.1016/j.gde.2009.04.010.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Moutsianas L, Agarwala V, Fuchsberger C, Flannick J, Rivas MA, Gaulton KJ, et al. The power of gene-based rare variant methods to detect disease-associated variation and test hypotheses about complex disease. PLoS Genet. 2015;11(4):e1005165.  https://doi.org/10.1371/journal.pgen.1005165.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Buchan JG, Alvarado DM, Haller GE, Cruchaga C, Harms MB, Zhang T, et al. Rare variants in FBN1 and FBN2 are associated with severe adolescent idiopathic scoliosis. Hum Mol Genet. 2014;23(19):5271–82.  https://doi.org/10.1093/hmg/ddu224.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Haller G, Alvarado D, McCall K, Yang P, Cruchaga C, Harms M, et al. A polygenic burden of rare variants across extracellular matrix genes among individuals with adolescent idiopathic scoliosis. Hum Mol Genet. 2016;25(1):202–9.  https://doi.org/10.1093/hmg/ddv463.PubMedCrossRefGoogle Scholar
  67. 67.
    Bashiardes S, Veile R, Allen M, Wise CA, Dobbs M, Morcuende JA, et al. SNTG1, the gene encoding gamma1-syntrophin: a candidate gene for idiopathic scoliosis. Hum Genet. 2004;115(1):81–9.  https://doi.org/10.1007/s00439-004-1121-y.PubMedCrossRefGoogle Scholar
  68. 68.
    Jagla K, Frasch M, Jagla T, Dretzen G, Bellard F, Bellard M. ladybird, a new component of the cardiogenic pathway in Drosophila required for diversification of heart precursors. Development. 1997;124(18):3471–9.PubMedGoogle Scholar
  69. 69.
    Jagla K, Jagla T, Heitzler P, Dretzen G, Bellard F, Bellard M. ladybird, a tandem of homeobox genes that maintain late wingless expression in terminal and dorsal epidermis of the Drosophila embryo. Development. 1997;124(1):91–100.PubMedGoogle Scholar
  70. 70.
    Gross MK, Moran-Rivard L, Velasquez T, Nakatsu MN, Jagla K, Goulding M. Lbx1 is required for muscle precursor migration along a lateral pathway into the limb. Development. 2000;127(2):413–24.PubMedGoogle Scholar
  71. 71.
    Gross MK, Dottori M, Goulding M. Lbx1 specifies somatosensory association interneurons in the dorsal spinal cord. Neuron. 2002;34(4):535–49.PubMedCrossRefGoogle Scholar
  72. 72.
    Muller T, Brohmann H, Pierani A, Heppenstall PA, Lewin GR, Jessell TM, et al. The homeodomain factor lbx1 distinguishes two major programs of neuronal differentiation in the dorsal spinal cord. Neuron. 2002;34(4):551–62.PubMedCrossRefGoogle Scholar
  73. 73.
    Langenhan T, Aust G, Hamann J. Sticky signaling—adhesion class g protein-coupled receptors take the stage. Sci Signal. 2013;6(276):re3.  https://doi.org/10.1126/scisignal.2003825.PubMedCrossRefGoogle Scholar
  74. 74.
    Monk KR, Naylor SG, Glenn TD, Mercurio S, Perlin JR, Dominguez C, et al. A G protein-coupled receptor is essential for Schwann cells to initiate myelination. Science. 2009;325(5946):1402–5.  https://doi.org/10.1126/science.1173474.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Monk KR, Oshima K, Jors S, Heller S, Talbot WS. Gpr126 is essential for peripheral nerve development and myelination in mammals. Development. 2011;138(13):2673–80.  https://doi.org/10.1242/dev.062224.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Waller-Evans H, Promel S, Langenhan T, Dixon J, Zahn D, Colledge WH, et al. The orphan adhesion-GPCR GPR126 is required for embryonic development in the mouse. PLoS One. 2010;5(11):e14047.  https://doi.org/10.1371/journal.pone.0014047.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Geng FS, Abbas L, Baxendale S, Holdsworth CJ, Swanson AG, Slanchev K, et al. Semicircular canal morphogenesis in the zebrafish inner ear requires the function of gpr126 (lauscher), an adhesion class G protein-coupled receptor gene. Development. 2013;140(21):4362–74.  https://doi.org/10.1242/dev.098061.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Ogura Y, Kou I, Miura S, Takahashi A, Xu L, Takeda K, et al. A functional SNP in BNC2 is associated with adolescent idiopathic scoliosis. Am J Hum Genet. 2015;97(2):337–42.  https://doi.org/10.1016/j.ajhg.2015.06.012.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Chi N, Epstein JA. Getting your Pax straight: Pax proteins in development and disease. Trends Genet. 2002;18(1):41–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Schubert FR, Tremblay P, Mansouri A, Faisst AM, Kammandel B, Lumsden A, et al. Early mesodermal phenotypes in splotch suggest a role for Pax3 in the formation of epithelial somites. Dev Dynam. 2001;222(3):506–21.  https://doi.org/10.1002/dvdy.1211.CrossRefGoogle Scholar
  81. 81.
    Buckingham M, Relaix F. The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions. Annu Rev Cell Dev Biol. 2007;23:645–73.  https://doi.org/10.1146/annurev.cellbio.23.090506.123438.PubMedCrossRefGoogle Scholar
  82. 82.
    Young AP, Wagers AJ. Pax3 induces differentiation of juvenile skeletal muscle stem cells without transcriptional upregulation of canonical myogenic regulatory factors. J Cell Sci. 2010;123(Pt 15):2632–9.  https://doi.org/10.1242/jcs.061606.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Rong PM, Teillet MA, Ziller C, Le Douarin NM. The neural tube/notochord complex is necessary for vertebral but not limb and body wall striated muscle differentiation. Development. 1992;115(3):657–72.PubMedGoogle Scholar
  84. 84.
    Xiao Y, Zhang L, He K, Gao X, Yang L, He L, et al. Characterization of a novel missense mutation on murine Pax3 through ENU mutagenesis. Yi Chuan Xue Bao. 2011;38(8):333–9.  https://doi.org/10.1016/j.jgg.2011.06.005.PubMedCrossRefGoogle Scholar
  85. 85.
    Farin HF, Mansouri A, Petry M, Kispert A. T-box protein Tbx18 interacts with the paired box protein Pax3 in the development of the paraxial mesoderm. J Biol Chem. 2008;283(37):25372–80.  https://doi.org/10.1074/jbc.M802723200.PubMedCrossRefGoogle Scholar
  86. 86.
    Kouwenhoven JW, Castelein RM. The pathogenesis of adolescent idiopathic scoliosis: review of the literature. Spine. 2008;33(26):2898–908.  https://doi.org/10.1097/BRS.0b013e3181891751.PubMedCrossRefGoogle Scholar
  87. 87.
    Schnittger S, Rao VV, Deutsch U, Gruss P Balling R Hansmann I. Pax1, a member of the paired box-containing class of developmental control genes, is mapped to human chromosome 20p11.2 by in situ hybridization (ISH and FISH). Genomics 1992;14(3):740-4.Google Scholar
  88. 88.
    Wallin J, Eibel H, Neubuser A, Wilting J, Koseki H, Balling R. Pax1 is expressed during development of the thymus epithelium and is required for normal T-cell maturation. Development. 1996;122(1):23–30.PubMedGoogle Scholar
  89. 89.
    Wallin J, Wilting J, Koseki H, Fritsch R, Christ B, Balling R. The role of Pax-1 in axial skeleton development. Development. 1994;120(5):1109–21.PubMedGoogle Scholar
  90. 90.
    Dy P, Wang W, Bhattaram P, Wang Q, Wang L, Ballock RT, et al. Sox9 directs hypertrophic maturation and blocks osteoblast differentiation of growth plate chondrocytes. Dev Cell. 2012;22(3):597–609.  https://doi.org/10.1016/j.devcel.2011.12.024.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Henry SP, Liang S, Akdemir KC, de Crombrugghe B. The postnatal role of Sox9 in cartilage. J Bone Miner Res. 2012;27(12):2511–25.  https://doi.org/10.1002/jbmr.1696.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Liu CF, Lefebvre V. The transcription factors SOX9 and SOX5/SOX6 cooperate genome-wide through super-enhancers to drive chondrogenesis. Nucleic Acids Res. 2015;43(17):8183–203.  https://doi.org/10.1093/nar/gkv688.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Lekovic GP, Rekate HL, Dickman CA, Pearson M. Congenital cervical instability in a patient with campomelic dysplasia. Childs Nerv Syst. 2006;22(9):1212–4.  https://doi.org/10.1007/s00381-006-0071-1.PubMedCrossRefGoogle Scholar
  94. 94.
    Siddiqui WA, Ahad A, Ahsan H. The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update. Arch Toxicol. 2015;89(3):289–317.  https://doi.org/10.1007/s00204-014-1448-7.PubMedCrossRefGoogle Scholar
  95. 95.
    Boot-Handford RP, Michaelidis TM, Hillarby MC, Zambelli A, Denton J, Hoyland JA, et al. The bcl-2 knockout mouse exhibits marked changes in osteoblast phenotype and collagen deposition in bone as well as a mild growth plate phenotype. Int J Exp Pathol. 1998;79(5):329–35.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Peradziryi H, Kaplan NA, Podleschny M, Liu X, Wehner P, Borchers A, et al. PTK7/Otk interacts with Wnts and inhibits canonical Wnt signalling. EMBO J. 2011;30(18):3729–40.  https://doi.org/10.1038/emboj.2011.236.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Hayes M, Naito M, Daulat A, Angers S, Ciruna B. Ptk7 promotes non-canonical Wnt/PCP-mediated morphogenesis and inhibits Wnt/beta-catenin-dependent cell fate decisions during vertebrate development. Development. 2013;140(8):1807–18.  https://doi.org/10.1242/dev.090183.PubMedCrossRefGoogle Scholar
  98. 98.
    Hayes M, Gao X, Yu LX, Paria N, Henkelman RM, Wise CA, et al. ptk7 mutant zebrafish models of congenital and idiopathic scoliosis implicate dysregulated Wnt signalling in disease. Nat Commun. 2014;5:4777.  https://doi.org/10.1038/ncomms5777.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Buchan JG, Gray RS, Gansner JM, Alvarado DM, Burgert L, Gitlin JD, et al. Kinesin family member 6 (kif6) is necessary for spine development in zebrafish. Dev Dynam. 2014;243(12):1646–57.  https://doi.org/10.1002/dvdy.24208.CrossRefGoogle Scholar
  100. 100.
    Cohen JC, Kiss RS, Pertsemlidis A, Marcel YL, McPherson R, Hobbs HH. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science. 2004;305(5685):869–72.  https://doi.org/10.1126/science.1099870.PubMedCrossRefGoogle Scholar
  101. 101.
    Ji W, Foo JN, O'Roak BJ, Zhao H, Larson MG, Simon DB, et al. Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat Genet. 2008;40(5):592–9.  https://doi.org/10.1038/ng.118.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Londono D, Chen KM, Musolf A, Wang R, Shen T, Brandon J, et al. A novel method for analyzing genetic association with longitudinal phenotypes. Stat Appl Genet Mol Biol. 2013;12(2):241–61.  https://doi.org/10.1515/sagmb-2012-0070.PubMedCrossRefGoogle Scholar
  103. 103.
    Ward K, Ogilvie JW, Singleton MV, Chettier R, Engler G, Nelson LM. Validation of DNA-based prognostic testing to predict spinal curve progression in adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2010;35(25):E1455–64.  https://doi.org/10.1097/BRS.0b013e3181ed2de1.CrossRefGoogle Scholar
  104. 104.
    Londono D, Kou I, Johnson TA, Sharma S, Ogura Y, Tsunoda T, et al. A meta-analysis identifies adolescent idiopathic scoliosis association with LBX1 locus in multiple ethnic groups. J Med Genet. 2014;51(6):401–6.  https://doi.org/10.1136/jmedgenet-2013-102067.PubMedCrossRefGoogle Scholar
  105. 105.
    Jiang L, Willner D, Danoy P, Xu H, Brown MA. Comparison of the performance of two commercial genome-wide association study genotyping platforms in Han Chinese samples. G3 (Bethesda). 2013;3(1):23–9.  https://doi.org/10.1534/g3.112.004069.CrossRefGoogle Scholar
  106. 106.
    Pasaniuc B, Rohland N, McLaren PJ, Garimella K, Zaitlen N, Li H, et al. Extremely low-coverage sequencing and imputation increases power for genome-wide association studies. Nat Genet. 2012;44(6):631–5.  https://doi.org/10.1038/ng.2283.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Morrison AC, Voorman A, Johnson AD, Liu X, Yu J, Li A, et al. Whole-genome sequence-based analysis of high-density lipoprotein cholesterol. Nat Genet. 2013;45(8):899–901.  https://doi.org/10.1038/ng.2671.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, Bjornsson S, et al. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature. 2012;488(7409):96–9.  https://doi.org/10.1038/nature11283.PubMedCrossRefGoogle Scholar
  109. 109.
    Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 2009;461(7261):272–6.  https://doi.org/10.1038/nature08250.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Iyengar SK, Elston RC. The genetic basis of complex traits: rare variants or "common gene, common disease"? Methods Mol Biol. 2007;376:71–84.  https://doi.org/10.1007/978-1-59745-389-9_6.PubMedCrossRefGoogle Scholar
  111. 111.
    Gibson G. Rare and common variants: twenty arguments. Nat Rev Genet. 2011;13(2):135–45.  https://doi.org/10.1038/nrg3118.CrossRefGoogle Scholar
  112. 112.
    Asimit J, Zeggini E. Rare variant association analysis methods for complex traits. Annu Rev Genet. 2010;44:293–308.  https://doi.org/10.1146/annurev-genet-102209-163421.PubMedCrossRefGoogle Scholar
  113. 113.
    Antonarakis SE, Chakravarti A, Cohen JC, Hardy J. Mendelian disorders and multifactorial traits: the big divide or one for all? Nat Rev Genet. 2010;11(5):380–4.  https://doi.org/10.1038/nrg2793.PubMedCrossRefGoogle Scholar
  114. 114.
    Lee TI, Young RA. Transcriptional regulation and its misregulation in disease. Cell. 2013;152(6):1237–51.  https://doi.org/10.1016/j.cell.2013.02.014.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Danko CG, Hyland SL, Core LJ, Martins AL, Waters CT, Lee HW, et al. Identification of active transcriptional regulatory elements from GRO-seq data. Nat Methods. 2015;12(5):433–8.  https://doi.org/10.1038/nmeth.3329.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Guo L, Yamashita H, Kou I, Takimoto A, Meguro-Horike M, Horike S, et al. Functional investigation of a non-coding variant associated with adolescent idiopathic scoliosis in zebrafish: elevated expression of the ladybird homeobox gene causes body axis deformation. PLoS Genet. 2016;12(1):e1005802.  https://doi.org/10.1371/journal.pgen.1005802.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Temple IK, Cockwell A, Hassold T, Pettay D, Jacobs P. Maternal uniparental disomy for chromosome 14. J Med Genet. 1991;28(8):511–4.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Kawahara G, Karpf JA, Myers JA, Alexander MS, Guyon JR, Kunkel LM. Drug screening in a zebrafish model of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A. 2011;108(13):5331–6.  https://doi.org/10.1073/pnas.1102116108.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2018

Authors and Affiliations

  1. 1.Sarah M. and Charles E. Seay Center for Musculoskeletal ResearchTexas Scottish Rite Hospital for ChildrenDallasUSA
  2. 2.Department of Integrative Biomedical SciencesTexas A&M UniversityCollege StationUSA
  3. 3.McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasUSA
  4. 4.Department of PediatricsUniversity of Texas Southwestern Medical CenterDallasUSA
  5. 5.Department of Orthopaedic SurgeryUniversity of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations