Skip to main content

Reinforced Specificity of Pollinator Moths

  • Chapter
  • First Online:
Obligate Pollination Mutualism

Part of the book series: Ecological Research Monographs ((ECOLOGICAL))

  • 944 Accesses

Abstract

The remarkably high level of partner specificity is a hallmark feature of the leafflower–leafflower moth mutualism. Together with the fig–fig wasp and yucca–yucca moth systems, obligate pollination mutualisms provide some of the best examples of highly species-specific plant–insect associations. However, the evolutionary processes underlying these patterns are poorly understood. The high degree of specificity in pollinating seed parasites is often regarded as the fortuitous result of specialization in their ancestors because these insects are derived from endophytic herbivores that are themselves highly host-specific. This chapter focuses on the comparison of the level of host specificity in Epicephala to those of purely parasitic gracillariid relatives as a test of whether mutualism reinforces partner specificity. When interpreted with what is known in the fig and yucca systems, such an analysis serves as a useful approach to determine how partner specificity is shaped in coevolved mutualisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • Aanen DK, Eggleton P, Lefèvre CR, Frøslev TG, Rosendahl S, Boomsma JJ (2002) The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proc Natl Acad Sci U S A 99:14887–14892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brouat C, Garcia N, Andary C, McKey D (2001) Plant lock and key: pairwise coevolution of an exclusion filter in an ant–plant mutualism. Proc R Soc Lond B 268:2131–2141

    Article  CAS  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland

    Google Scholar 

  • Currie CR, Wong B, Stuart AE, Schultz TR, Rehner SA, Mueller UG, Sung GH, Spatafora JW, Straus NA (2003) Ancient tripartite coevolution in the attine ant–microbe symbiosis. Science 299:386–388

    Article  CAS  PubMed  Google Scholar 

  • Davidson DW, McKey D (1993) The evolutionary ecology of symbiotic ant–plant relationships. J Hymenopt Res 2:13–83

    Google Scholar 

  • Edwards DP, Hassall M, Sutherland WJ, Yu DW (2006) Assembling a mutualism: Ant symbionts locate their host plants by detecting volatile compounds. Insect Soc 53:172–176

    Article  Google Scholar 

  • Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608

    Article  Google Scholar 

  • Farrell BD (1998) ‘Inordinate fondness’ explained: why are there so many beetles? Science 281:555–559

    Article  CAS  PubMed  Google Scholar 

  • Federle W, Maschwitz U, Fiala B, Riederer M, Hölldobler B (1997) Slippery ant-plants and skillful climbers: selection and protection of specific ant partners by epicuticular wax blooms in Macaranga (Euphorbiaceae). Oecologia 112:217–224

    Article  PubMed  Google Scholar 

  • Gómez JM, Zamora R (2006) Ecological factors that promote the evolution of generalization in pollination systems. In: Waser N, Ollerton J (eds) Plant–pollinator interactions: from generalization to specialization. University of Chicago Press, Chicago, pp 145–166

    Google Scholar 

  • Grangier J, Dejean A, Malé PJG, Solano PJ, Orivel J (2009) Mechanisms driving the specificity of a myrmecophyte–ant association. Biol J Linn Soc 97:90–97

    Article  Google Scholar 

  • Guimarães PR, Rico-Gray V, Oliveira PS, Izzo TJ, dos Reis SF, Thompson JN (2007) Interaction intimacy affects structure and coevolutionary dynamics in mutualistic networks. Curr Biol 17:1797–1803

    Article  PubMed  Google Scholar 

  • Heil M, McKey D (2003) Protective ant–plant interactions as model systems in ecological and evolutionary research. Annu Rev Ecol Evol Syst 34:425–453

    Article  Google Scholar 

  • Heil M, Rattke J, Boland W (2005) Postsecretory hydrolysis of nectar sucrose and specialization in ant/plant mutualism. Science 308:560–563

    Article  CAS  PubMed  Google Scholar 

  • Herre EA, Jandér KC, Machado CA (2008) Evolutionary ecology of figs and their associates: recent progress and outstanding puzzles. Annu Rev Ecol Evol Syst 39:439–458

    Article  Google Scholar 

  • Hosokawa T, Kikuchi Y, Nikoh N, Shimada M, Fukatsu T (2006) Strict host–symbiont cospeciation and reductive genome evolution in insect gut bacteria. PLoS Biol 4:1841–1851

    Article  CAS  Google Scholar 

  • Jousselin E, van Noort S, Rasplus JY, Greeff JM (2006) Patterns of diversification of Afrotropical Otiteselline fig wasps: phylogenetic study reveals a double radiation across host figs and conservatism of host association. J Evol Biol 19:253–266

    Article  CAS  PubMed  Google Scholar 

  • Jousselin E, van Noort S, Berry V, Rasplus JY, Rønsted N, Erasmus JC, Greeff JM (2008) One fig to bind them all: host conservatism in a fig wasp community unravelled by cospeciation analyses among pollinating and nonpollinating fig wasps. Evolution 62:1777–1797

    Article  PubMed  Google Scholar 

  • Kawakita A, Kato M (2009) Repeated independent evolution of obligate pollination mutualism in the Phyllantheae–Epicephala association. Proc R Soc B 276:417–426

    Article  PubMed  Google Scholar 

  • Lavin M, Herendeen PS, Wojciechowski MF (2005) Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary. Syst Biol 54:575–594

    Article  PubMed  Google Scholar 

  • Lopez-Vaamonde C, Rasplus JY, Weiblen GD, Cook JM (2001) Molecular phylogenies of fig wasps: partial cocladogenesis of pollinators and parasites. Mol Phylogenet Evol 21:55–71

    Article  CAS  PubMed  Google Scholar 

  • Machado CA, Robbins N, Gilbert MTP, Herre EA (2005) Critical review of host specificity and its coevolutionary implications in the fig/fig-wasp mutualism. Proc Natl Acad Sci U S A 102:6558–6565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marussich WA, Machado CA (2007) Host-specificity and coevolution among pollinating and nonpollinating New World fig wasps. Mol Ecol 16:1925–1946

    Article  PubMed  Google Scholar 

  • Mikheyev AS, Mueller UG, Abbot P (2006) Cryptic sex and many-to-one coevolution in the fungus-growing ant symbiosis. Proc Natl Acad Sci U S A 103:10702–10706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitter C, Farrell B, Wiegmann B (1988) The phylogenetic study of adaptive zones: has phytophagy promoted insect diversification? Am Nat 132:107–128

    Article  Google Scholar 

  • Molbo D, Machado CA, Sevenster JG, Keller L, Herre EA (2003) Cryptic species of fig-pollinating wasps: implications for the evolution of the fig–wasp mutualism, sex allocation, and precision of adaptation. Proc Natl Acad Sci U S A 100:5867–5872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran NA, Telang A (1998) The evolution of bacteriocyte-associated endosymbionts in insects. Bioscience 48:295–304

    Article  Google Scholar 

  • Mueller UG, Rehner SA, Schultz TR (1998) The evolution of agriculture in ants. Science 281:2034–2038

    Article  CAS  PubMed  Google Scholar 

  • Pellmyr O (1999) A systematic revision of the yucca moths in the Tegeticula yuccasella complex north of Mexico. Syst Entomol 24:243–271

    Article  Google Scholar 

  • Pellmyr O (2002) Pollination by animals. In: Herrera CM, Pellmyr O (eds) Plant–animal interactions. Blackwell Publishing, Oxford, pp 157–184

    Google Scholar 

  • Pellmyr O (2003) Yuccas, yucca moths, and coevolution: a review. Ann Mo Bot Gard 90:35–55

    Article  Google Scholar 

  • Pellmyr O, Thompson JN (1992) Multiple occurrences of mutualism in the yucca moth lineage. Proc Natl Acad Sci U S A 89:2927–2929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pellmyr O, Thompson JN, Brown JM, Harrison RG (1996a) Evolution of pollination and mutualism in the yucca moth lineage. Am Nat 148:827–847

    Article  Google Scholar 

  • Pellmyr O, Leebens-Mack J, Huth CJ (1996b) Non-mutualistic yucca moths and their evolutionary consequences. Nature 380:155–156

    Article  CAS  PubMed  Google Scholar 

  • Pellmyr O, Balcázar-Lara M, Althoff DM, Segraves KA, Leebens-Mack J (2006) Phylogeny and life history evolution of Prodoxus yucca moths (Lepidoptera: Prodoxidae). Syst Entomol 31:1–20

    Article  Google Scholar 

  • Poulsen M, Boomsma JJ (2005) Mutualistic fungi control crop diversity in fungus-growing ants. Science 307:741–744

    Article  CAS  PubMed  Google Scholar 

  • Price P (1980) Evolutionary biology of parasites. Princeton University Press, Princeton

    Google Scholar 

  • Quek SP, Davies SJ, Ashton PS, Itino T, Pierce NE (2007) The geography of diversification in mutualistic ants: a gene’s-eye view into the Neogene history of Sundaland rain forests. Mol Ecol 16:2045–2062

    Article  CAS  PubMed  Google Scholar 

  • Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, New York

    Google Scholar 

  • Smith CI, Godsoe WKW, Tank S, Yoder JB, Pellmyr O (2008b) Distinguishing coevolution from covicariance in an obligate pollination mutualism: asynchronous divergence in Joshua tree and its pollinators. Evolution 62:2676–2687

    Article  PubMed  Google Scholar 

  • Smith CI, Yoder JB, Godsoe W, Pellmyr O (2009) Host specificity and reproductive success of yucca moths (Tegeticula spp., Lepidoptera: Prodoxidae) mirror patterns of gene flow between host plant varieties of Joshua tree (Yucca brevifolia: Agavaceae). Mol Ecol 18:5218–5229

    Article  PubMed  Google Scholar 

  • Strauss SY, Zangerl AR (2002) Plant–insect interactions in terrestrial ecosystems. In: Herrera CM, Pellmyr O (eds) Plant–animal interactions. Blackwell Publishing, Oxford, pp 77–106

    Google Scholar 

  • Thompson JN (1994) The coevolutionary process. The University of Chicago Press, Chicago

    Book  Google Scholar 

  • Thompson JN (2005) The geographic mosaic of coevolution. The University of Chicago Press, Chicago

    Google Scholar 

  • Visser AA, Ros VID, de Beer ZW, Debets AJM, Hartog E, Kuyper TW, Laessøe T, Slippers B, Aanen DK (2009) Levels of specificity of Xylaria species associated with fungus-growing termites: a phylogenetic approach. Mol Ecol 18:553–567

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Cannon CH, Chen J (2016) Pollinator sharing and gene flow among closely related sympatric dioecious fig taxa. Proc R Soc B 283:20152963

    Article  PubMed  PubMed Central  Google Scholar 

  • Weiblen GD (2002) How to be a fig wasp. Annu Rev Entomol 47:299–330

    Article  CAS  PubMed  Google Scholar 

  • Weiblen GD, Bush GL (2002) Speciation in fig pollinators and parasites. Mol Ecol 11:1573–1578

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Kawakita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Kawakita, A., Kato, M. (2017). Reinforced Specificity of Pollinator Moths. In: Kato, M., Kawakita, A. (eds) Obligate Pollination Mutualism. Ecological Research Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56532-1_7

Download citation

Publish with us

Policies and ethics