Origin of Active Pollination and Mutualism

Part of the Ecological Research Monographs book series (ECOLOGICAL)


The mutualisms between plants and their seed-parasitic pollinators, such as the fig–fig wasp, yucca–yucca moth, and leafflower–leafflower moth mutualisms, provide textbook examples of specialized pollination systems (Weiblen 2002; Cook and Rasplus 2003; Pellmyr 2003; Kato et al. 2003). Remarkably, in all three systems, the pollinator insects actively collect and transport pollen between flowers in order to ensure food for their seed-feeding larvae. Reciprocal adaptation by plants to restrict floral access by other visitors resulted in extreme mutual dependence between plants and insects. Consequently, these mutualisms served as principal model systems for the studies of coevolution and mutualism.


Breynia Epicephala Flueggea Gracillariidae Glochidion Phyllantheae Phyllanthus Phylogeny 

Literature Cited

  1. Als TD, Vila R, Kandul NP, Nash DR, Yen S-H, Hsu Y-F, Mignault AA, Boomsma JJ, Pierce NE (2004) The evolution of alternative parasitic life histories in large blue butterflies. Nature 432:386–390CrossRefPubMedGoogle Scholar
  2. Antal JS, Prasad M (1996) Some more leaf-impressions from the Himalayan foot-hills of Darjeeling District, West Bengal, India. Palaeobotanist 43:1–9Google Scholar
  3. Bogler DJ, Neff JL, Simpson BB (1995) Multiple origins of the yucca–yucca moth association. Proc Natl Acad Sci U S A 92:6864–6867CrossRefPubMedPubMedCentralGoogle Scholar
  4. Brower AVZ (1994) Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proc Natl Acad Sci U S A 91:6491–6495CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cook JM, Rasplus JY (2003) Mutualists with attitude: coevolving fig wasps and figs. Trends Ecol Evol 18:241–248CrossRefGoogle Scholar
  6. Davis CC, Webb CO, Wurdack KJ, Jaramillo CA, Donoghue MJ (2005) Explosive radiation of Malpighiales supports a mid-cretaceous origin of modern tropical rain forests. Am Nat 165:E36–E65CrossRefPubMedGoogle Scholar
  7. Farrell BD (2001) Evolutionary assembly of the milkweed fauna: cytochrome oxidase I and the age of Tetraopes beetles. Mol Phylogenet Evol 18:467–478CrossRefPubMedGoogle Scholar
  8. Fleming TH, Holland JN (1998) The evolution of obligate pollination mutualisms: senita cactus and senita moth. Oecologia 114:368–375CrossRefPubMedGoogle Scholar
  9. Gaunt MW, Miles MA (2002) An insect molecular clock dates the origin of the insects and accords with palaeontological and biogeographical landmarks. Mol Biol Evol 19:748–761CrossRefPubMedGoogle Scholar
  10. Gruas-Cavagnetto CE, Köhler E (1992) Pollens fossils d’Euphorbiacées de l’Eocène français. Grana 31:291–304CrossRefGoogle Scholar
  11. Hoffmann P, Kathriarachchi H, Wurdack KJ (2006) A phylogenetic classification of Phyllantheae (Malpighiales; Euphorbiaceae sensu lato). Kew Bull 61:37–53Google Scholar
  12. Jaeger N, Després L (1998) Obligate mutualism between Trollius europaeus and its seed-parasite pollinators Chiastocheta flies in the Alps. C R Acad Sci III 321:789–796CrossRefGoogle Scholar
  13. Kandul NP, Lukhtanov VA, Dantchenko AV, Coleman JW, Sekercioglu CH, Haig D, Pierce NE (2004) Phylogeny of Agrodiaetus Hüber 1822 (Lepidoptera: Lycaenidae) inferred from mtDNA sequences of COI and COII and nuclear sequences of EF1-a: karyotype diversification and species radiation. Syst Biol 53:278–298CrossRefPubMedGoogle Scholar
  14. Kathriarachchi H, Samuel R, Hoffmann P, Mlinarec J, Wurdack KJ, Ralimanana H, Stuessy TF, Chase MW (2006) Phylogenetics of the tribe Phyllantheae (Phyllanthaceae; Euphorbiaceae sensu lato) based on nrITS and plastid matK DNA sequence data. Am J Bot 93:637–655CrossRefPubMedGoogle Scholar
  15. Kato M, Takimura A, Kawakita K (2003) An obligate pollination mutualism and reciprocal diversification in the tree genus Glochidion (Euphorbiaceae). Proc Natl Acad Sci U S A 100:5264–5267CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kawakita A (2010) Evolution of obligate pollination mutualism in the tribe Phyllantheae (Phyllanthaceae). Plant Spec Biol 25:3–19CrossRefGoogle Scholar
  17. Kawakita A, Kato M (2009) Repeated independent evolution of obligate pollination mutualism in the Phyllantheae–Epicephala association. Proc R Soc B 276:417–426CrossRefPubMedGoogle Scholar
  18. Kephart S, Reynolds RJ, Rutter MT, Fenster CB, Dudash MR (2006) Pollination and seed predation by moths on Silene and allied Caryophyllaceae: evaluating a model system to study the evolution of mutualisms. New Phytol 169:667–680CrossRefPubMedGoogle Scholar
  19. Lopez-Vaamonde C, Wikström N, Labandeira C, Godfray HCJ, Goodman SJ, Cook JM (2006) Fossil-calibrated molecular phylogenies reveal that leafmining moths radiated millions of years after their host plants. J Evol Biol 19:1314–1326CrossRefPubMedGoogle Scholar
  20. Machado CA, Jousselin E, Kjellberg F, Compton SG, Herre EA (2001) Phylogenetic relationships, historical biogeography and character evolution of fig-pollinating wasps. Proc R Soc B 268:685–694CrossRefPubMedPubMedCentralGoogle Scholar
  21. Pellmyr O (2003) Yuccas, yucca moths, and coevolution: a review. Ann Mo Bot Gard 90:35–55CrossRefGoogle Scholar
  22. Pellmyr O, Leebens-Mack J (1999) Forty million years of mutualism: evidence for Eocene origin of the yucca–yucca moth association. Proc Natl Acad Sci U S A 96:9178–9183CrossRefPubMedPubMedCentralGoogle Scholar
  23. Pellmyr O, Leebens-Mack J, Huth CJ (1996b) Non-mutualistic yucca moths and their evolutionary consequences. Nature 380:155–156CrossRefPubMedGoogle Scholar
  24. Pellmyr O, Segraves KA, Althoff DM, Balcázar-Lara M, Leebens-Mack J (2007) The phylogeny of yuccas. Mol Phylogenet Evol 43:493–501CrossRefPubMedGoogle Scholar
  25. Prasad M (1994) Siwalik (Middle Miocene) leaf impressions from the foothills of the Himalayas, India. Tertiary Res 15:53–90Google Scholar
  26. Quek SP, Davies SJ, Itino T, Pierce NE (2004) Codiversification in an ant–plant mutualism: stem texture and the evolution of host use in Crematogaster (Formicidae: Myrmicinae) inhabitants of Macaranga (Euphorbiaceae). Evolution 58:554–570CrossRefPubMedGoogle Scholar
  27. Quek SP, Davies SJ, Ashton PS, Itino T, Pierce NE (2007) The geography of diversification in mutualistic ants: a gene’s-eye view into the Neogene history of Sundaland rain forests. Mol Ecol 16:2045–2062CrossRefPubMedGoogle Scholar
  28. Rønsted N, Weiblen GD, Cook JM, Salamin N, Machado CA, Savolainen V (2005) 60 million years of co-divergence in the fig–wasp symbiosis. Proc R Soc B 272:2593–2599CrossRefPubMedPubMedCentralGoogle Scholar
  29. Smith CI, Pellmyr O, Althoff DM, Balcazar-Lara M, Leebens-Mack JH, Segraves KA (2008a) Pattern and timing of diversification in Yucca (Agavaceae): specialized pollination does not escalate rates of diversification. Proc R Soc B 275:249–258CrossRefPubMedGoogle Scholar
  30. Song B, Chen G, Stöcklin J, Peng DL, Niu Y, Li ZM, Sun H (2014) A new pollinating seed-consuming mutualism between Rheum nobile and a fly fungus gnat, Bradysia sp., involving pollinator attraction by a specific floral compound. New Phytol 203:1109–1018CrossRefPubMedGoogle Scholar
  31. Sota T, Hayashi M (2007) Comparative historical biogeography of Plateumaris leaf beetles (Coleoptera: Chrysomelidae) in Japan: interplay between fossil and molecular data. J Biogeogr 34:977–993CrossRefGoogle Scholar
  32. Thompson JN (2005) The geographic mosaic of coevolution. The University of Chicago Press, ChicagoGoogle Scholar
  33. Thompson JN, Cunningham BM (2002) Geographic structure and dynamics of coevolutionary selection. Nature 417:735–738CrossRefPubMedGoogle Scholar
  34. Thompson JN, Pellmyr O (1992) Mutualism with pollinating seed parasites amid co-pollinators: constraints on specialization. Ecology 73:1780–1791CrossRefGoogle Scholar
  35. Ueda S, Quek SP, Itioka T, Inamori K, Sato Y, Murase K, Itino T (2008) An ancient tripartite symbiosis of plants, ants and scale insects. Proc R Soc B 275:2319–2326CrossRefPubMedPubMedCentralGoogle Scholar
  36. Webster GL (1958) A monographic study of the West Indian species of Phyllanthus. J Arnold Arbor 39(49–100):111–212CrossRefGoogle Scholar
  37. Weiblen GD (2002) How to be a fig wasp. Annu Rev Entomol 47:299–330CrossRefPubMedGoogle Scholar
  38. Westerbergh A (2004) An interaction between a specialized seed predator moth and its dioecious host plant shifting from parasitism to mutualism. Oikos 105:564–574CrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  1. 1.Center for Ecological ResearchKyoto UniversityOtsuJapan
  2. 2.Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan

Personalised recommendations