Skip to main content

Cospeciation and Host Shift

  • Chapter
  • First Online:
  • 961 Accesses

Part of the book series: Ecological Research Monographs ((ECOLOGICAL))

Abstract

When two interacting lineages have been in intimate association during much or all of their diversification, as in the case of obligate pollination mutualisms or many host–parasite interactions, there is a probability that speciation in one group is paralleled by speciation in the other. This mode of diversification results in a pattern of shared evolutionary history between the two lineages, known as cospeciation. Cospeciation can be a nonadaptive process that occurs in the absence of selection. For example, repeated vicariance events followed by shared allopatric speciation can produce a pattern of parallel diversification (Roderick 1997). However, cospeciation can also be reinforced or directly result from an adaptive process. For example, in feather lice and their avian hosts, preening behavior of the host imposes selection on louse body size, which prevents lice from switching between hosts of different sizes (Clayton et al. 2003). In obligate pollination mutualisms, the pollinators are responsible for the fertilization among conspecific host flowers, and thus some adaptation in the plants to exclude nonlegitimate pollinators is likely present. In fact, there are several reciprocally selected traits that may reinforce plant–pollinator specialization, such as synchronized phenological patterns (Wiebes 1979; Patel and Hossaert-McKey 2000), species-specific olfactory signals (Hossaert-McKey et al. 1994; Song et al. 2001; Grison-Pigé et al. 2002, 2003; Okamoto et al. 2007; Svensson et al. 2008), and reciprocal adaptation between pollinator morphology and floral structure (Ramírez 1974; Herre 1989; van Noort and Compton 1996; Kato et al. 2003; Weiblen 2004). Thus, knowledge of the degree of cospeciation in obligate pollination mutualisms provides an essential step toward understanding the historical role of coevolution in shaping speciation and diversification in plants and pollinators.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literature Cited

  • Addicott JF (1996) Cheaters in yucca/moth mutualism. Nature 380:114–115

    Article  Google Scholar 

  • Addicott JF, Bao T (1999) Limiting the costs of mutualism: multiple modes of interaction between yuccas and yucca moths. Proc R Soc Lond B 266:197–202

    Article  Google Scholar 

  • Airy Shaw HK (1978) Notes on Malesian and other Asiatic Euphorbiaceae. Kew Bull 33:25–77

    Article  Google Scholar 

  • Althoff DM, Segraves KA, Smith CI, Leebens-Mack J, Pellmyr O (2012) Geographic isolation trumps coevolution as a driver of yucca and yucca moth diversification. Mol Phylogenet Evol 62:898–906

    Article  PubMed  Google Scholar 

  • Chakrabarty T, Gangopadhyay M (1995) The genus Glochidion (Euphorbiaceae) in the Indian subcontinent. J Econ Taxon Bot 19:173–234

    Google Scholar 

  • Clayton DH, Bush SE, Goates BM, Johnson KP (2003) Host defense reinforces host–parasite cospeciation. Proc Natl Acad Sci U S A 100:15694–15699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compton SG (1990) A collapse of host specificity in some African fig wasps. S Afr J Sci 86:39–40

    Google Scholar 

  • Conow C, Fielder D, Ovadia Y, Libeskind-Hadas R (2010) Jane: a new tool for the cophylogeny reconstruction problem. Algorithm Mol Biol 5:16

    Article  Google Scholar 

  • Govaerts R, Frodin RG, Radcliffe-Smith A (2000) World checklist and bibliography of Euphorbiaceae. Royal Botanic Gardens, Kew

    Google Scholar 

  • Grison-Pigé L, Bassière J, Hossaert-McKey M (2002) Specific attraction of fig-pollinating wasps: role of volatile compounds released by tropical figs. J Chem Ecol 28:283–295

    Article  PubMed  Google Scholar 

  • Grison-Pigé L, Hossaert-McKey M, Greeff JM, Bassière J (2003) Fig volatile compounds—a first comparative study. Phytochemistry 61:61–71

    Article  Google Scholar 

  • Hembry DH, Kawakita A, Gurr NE, Schmaedick MA, Baldwin BG, Gillespie RG (2013a) Non-congruent colonizations and diversification in a coevolving pollination mutualism on oceanic islands. Proc R Soc B 280:20130361

    Article  PubMed  PubMed Central  Google Scholar 

  • Hembry DH, Okamoto T, McCormack G, Gillespie RG (2013b) Phytophagous insect community assembly through niche conservatism on oceanic islands. J Biogeogr 40:225–235

    Article  Google Scholar 

  • Herre EA (1989) Coevolution of reproductive characteristics in 12 species of New World figs and their pollinator wasps. Experientia 45:367–347

    Article  Google Scholar 

  • Herre EA, Machado CA, Bermingham E, Nason JD, Windsor DM, McCafferty S, Van Houten W, Bachmann K (1996) Molecular phylogenies of figs and their pollinator wasps. J Biogeogr 23:521–530

    Article  Google Scholar 

  • Hossaert-McKey M, Gibernau M, Frey JE (1994) Chemosensory attraction of fig wasps to substances produced by receptive figs. Entomol Exp Appl 70:185–191

    Article  Google Scholar 

  • Jobb G (2011) TREEFINDER version of March 2011. Munich, Germany. Distributed by the author at http://www.treefinder.de/

  • Kato M, Takimura A, Kawakita K (2003) An obligate pollination mutualism and reciprocal diversification in the tree genus Glochidion (Euphorbiaceae). Proc Natl Acad Sci U S A 100:5264–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawakita A, Kato M (2006) Assessment of the diversity and species specificity of the mutualistic association between Epicephala moths and Glochidion trees. Mol Ecol 15:3567–3581

    Article  CAS  PubMed  Google Scholar 

  • Kawakita A, Kato M (2009) Repeated independent evolution of obligate pollination mutualism in the Phyllantheae–Epicephala association. Proc R Soc B 276:417–426

    Article  PubMed  Google Scholar 

  • Kawakita A, Takimura A, Terachi T, Sota T, Kato M (2004) Cospeciation analysis of an obligate pollination mutualism: Have Glochidion trees (Euphorbiaceae) and pollinating Epicephala moths (Gracillariidae) diversified in parallel? Evolution 58:2201–2214

    CAS  PubMed  Google Scholar 

  • Kerdelhue C, Le Clainche I, Rasplus JY (1999) Molecular phylogeny of the Ceratosolen species pollinating Ficus of the subgenus Sycomorus sensu stricto: biogeographical history and origins of the species-specificity breakdown cases. Mol Phylogenet Evol 3:401–414

    Article  Google Scholar 

  • Legendre P, Desdevises Y, Bazin E (2002) A statistical test for host–parasite coevolution. Syst Biol 51:217–234

    Article  PubMed  Google Scholar 

  • Lopez-Vaamonde C, Dixon DJ, Cook JM, Rasplus JY (2002) Revision of the Australian species of Pleistodontes (Hymenoptera: Agaonidae) fig-pollinating wasps and their host–plant associations. Zool J Linnean Soc 136:637–683

    Article  Google Scholar 

  • Machado CA, Jousselin E, Kjellberg F, Compton SG, Herre EA (2001) Phylogenetic relationships, historical biogeography and character evolution of fig-pollinating wasps. Proc R Soc B 268:685–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meier-Kolthoff JP, Auch AF, Huson DH, Göker M (2007) COPYCAT: cophylogenetic analysis tool. Bioinformatics 23:898–900

    Article  CAS  PubMed  Google Scholar 

  • Michaloud G, Carriere S, Kobbi M (1996) Exceptions to the one:one relationship between African fig trees and their fig wasp pollinators: possible evolutionary scenarios. J Biogeogr 23:513–520

    Article  Google Scholar 

  • Molbo D, Machado CA, Sevenster JG, Keller L, Herre EA (2003) Cryptic species of fig-pollinating wasps: implications for the evolution of the fig–wasp mutualism, sex allocation, and precision of adaptation. Proc Natl Acad Sci U S A 100:5867–5872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamoto T, Kawakita A, Kato M (2007) Interspecific variation of floral scent composition in Glochidion and its association with host-specific pollinating seed parasite (Epicephala). J Chem Ecol 33:1065–1081

    Article  CAS  PubMed  Google Scholar 

  • Patel A, Hossaert-McKey M (2000) Components of reproductive success in two dioecious fig species, Ficus exasperata and Ficus hispida. Ecology 81:2850–2866

    Article  Google Scholar 

  • Pellmyr O (1999) A systematic revision of the yucca moths in the Tegeticula yuccasella complex north of Mexico. Syst Entomol 24:243–271

    Article  Google Scholar 

  • Pellmyr O, Leebens-Mack J (1999) Forty million years of mutualism: evidence for Eocene origin of the yucca–yucca moth association. Proc Natl Acad Sci U S A 96:9178–9183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pellmyr O, Leebens-Mack J, Huth CJ (1996b) Non-mutualistic yucca moths and their evolutionary consequences. Nature 380:155–156

    Article  CAS  PubMed  Google Scholar 

  • Pellmyr O, Segraves KA, Althoff DM, Balcázar-Lara M, Leebens-Mack J (2007) The phylogeny of yuccas. Mol Phylogenet Evol 43:493–501

    Article  CAS  PubMed  Google Scholar 

  • Ramírez WB (1974) Coevolution of Ficus and Agaonidae. Ann Mo Bot Gard 61:770–780

    Article  Google Scholar 

  • Roderick GK (1997) Herbivorous insects and the Hawaiian silversword alliance: coevolution or cospeciation? Pac Sci 51:440–449

    Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Song Q, Yang D, Zhang G, Yang C (2001) Volatiles from Ficus hispida and their attractiveness to fig wasps. J Chem Ecol 27:1929–1942

    Article  CAS  PubMed  Google Scholar 

  • van Noort S, Compton SG (1996) Convergent evolution of agaonine and sycoecine (Agaonidae, Chalcidoidea) head shape in response to the constraints of host fig morphology. J Biogeogr 23:415–424

    Article  Google Scholar 

  • Webster GL (1994) Synopsis of the genera and suprageneric taxa of Euphorbiaceae. Ann Mo Bot Gard 81:33–144

    Article  Google Scholar 

  • Weiblen GD (2000) Phylogenetic relationships of functionally dioecious Ficus (Moraceae) based on ribosomal DNA sequences and morphology. Am J Bot 87:1342–1357

    Article  CAS  PubMed  Google Scholar 

  • Weiblen GD (2001) Phylogenetic relationships of fig wasps pollinating functionally dioecious Ficus based on mitochondrial DNA sequences and morphology. Syst Biol 50:243–267

    Article  CAS  PubMed  Google Scholar 

  • Weiblen GD (2004) Correlated evolution in fig pollination. Syst Biol 53:128–139

    Article  PubMed  Google Scholar 

  • Weiblen GD, Bush GL (2002) Speciation in fig pollinators and parasites. Mol Ecol 11:1573–1578

    Article  PubMed  Google Scholar 

  • Wiebes JT (1979) Co-evolution of figs and their insect pollinators. Annu Rev Ecol Syst 10:1–12

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Kawakita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Kawakita, A., Kato, M. (2017). Cospeciation and Host Shift. In: Kato, M., Kawakita, A. (eds) Obligate Pollination Mutualism. Ecological Research Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56532-1_10

Download citation

Publish with us

Policies and ethics