Bioprobes pp 115-147 | Cite as

Adaptive and Innate Immune Systems

  • Takao KataokaEmail author


Adaptive and innate immune systems play essential roles in the recognition and elimination of microbial pathogens, such as viruses, bacteria, fungi, and parasites. In adaptive immunity, T cells and B cells induce immune responses through their respective antigen receptors, called T-cell receptors and B-cell receptors, both of which specifically recognize antigens or antigenic peptides derived from microbial pathogens. In innate immunity, germline-encoded pattern recognition receptors (PRRs) serve as sensors that detect the pathogen-associated molecular patterns found in microbial pathogens. PRRs have been classified into different families: the toll-like receptor family, nucleotide binding domain and leucine-rich repeat-containing receptor family, retinoic acid-inducible gene I-like receptor family, and C-type lectin receptor family. Upon the recognition of microbial pathogens, antigen receptors or PRRs initiate various signaling pathways, leading to the activation of different transcriptional programs that provoke immune responses in order to eliminate invaded pathogens. In this chapter, I describe small-molecule modulators that target specific steps in the intracellular signaling pathways induced by antigen receptors, PRRs, and inflammatory cytokine receptors.


Antigen receptor C-type lectin receptor Fas Granzyme Inflammasome Nuclear factor κB Perforin RIG-I-like receptor Toll-like receptor Tumor necrosis factor receptor 



apoptosis-associated speck-like protein containing a CARD


B-cell lymphoma 10


B-cell receptors


Burton’s tyrosine kinase


caspase recruitment domain


caspase recruitment domain-containing membrane-associated guanylate kinase protein 1


C-type lectin receptor


cytokine release inhibitory drugs


cytotoxic T lymphocytes




death-inducing signaling complex


ethylene glycol-bis(β-aminoethylether)-N,N,N′,N′-tetraacetic acid


endoplasmic reticulum


Fas-associated death domain protein


Fas ligand




inhibitor of NF-κB


IκB kinase




IL-1 receptor




IFN-β promoter stimulator 1


IL-1 receptor-associated kinase


IFN regulatory factors


immunoreceptor tyrosine-based activation motifs


interleukin-2-inducible T-cell kinase


LPS binding protein


laboratory of genetics and physiology 2




membrane attack complex perforin


mucosa-associated lymphoid tissue lymphoma-translocation gene 1


myeloid differentiation factor 2


melanoma differentiation-associated gene 5


myeloid differentiation primary response gene 88


nuclear factor of activated T cells


nuclear factor κB


natural killer


nucleotide binding domain and leucine-rich repeat-containing receptor


pathogen-associated molecular patterns


3-phosphoinositide-dependent kinase 1


phosphatidylinositol 3-kinase




protein kinase C


phospholipase C


protein tyrosine kinases


pattern recognition receptors


pyrin domain


retinoic acid-inducible gene I


receptor-interacting protein


retinoic acid-inducible gene I-like receptor


reactive oxygen species


spleen tyrosine kinase


TGF-β-activated kinase 1


TANK binding kinase 1


T-cell receptors




TIR domain-containing adaptor protein


toll-like receptor


tumor necrosis factor


TNF receptor 1


TNF receptor-associated factor


TRIF-related adaptor molecule


TIR domain-containing adaptor inducing IFN-β





I sincerely thank Dr. Hiroyuki Koshino for his help in confirming and drawing the structures of the compounds. I am also very grateful to Dr. Kazuo Nagai for his critical reading of this manuscript.


  1. 1.
    Schulze-Luehrmann J, Ghosh S (2006) Antigen-receptor signaling to nuclear factor κB. Immunity 25:701–715PubMedCrossRefGoogle Scholar
  2. 2.
    Brownlie RJ, Zamoyska R (2013) T cell receptor signaling networks: branched, diversified and bounded. Nat Rev Immunol 13:257–269PubMedCrossRefGoogle Scholar
  3. 3.
    Vargas L, Hamasy A, Nore BF, Smith CIE (2013) Inhibitors of BTK and ITK: state of the new drugs for cancer, autoimmunity and inflammatory diseases. Scand J Immunol 78:130–139PubMedCrossRefGoogle Scholar
  4. 4.
    Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820PubMedCrossRefGoogle Scholar
  5. 5.
    Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science 327:291–295PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Akinleye A, Chen Y, Mukhi N, Song Y, Liu D (2013) Ibrutinib and novel BTK inhibitors in clinical development. J Hematol Oncol 6:59PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Conley JM, Gallagher MP, Berg LJ (2016) T cells and gene regulation: the switching on and turning up of genes after T cell receptor stimulation in CD8 T cells. Front Immunol 7:76PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Oh-hora M, Rao A (2008) Calcium signaling in lymphocytes. Curr Opin Immunol 20:250–258PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Newton AC (2010) Protein kinase C: poised to signal. Am J Physiol Endocrinol Metab 298:E395–E402PubMedCrossRefGoogle Scholar
  10. 10.
    Thome M, Charton JE, Pelzer C, Hailfinger S (2010) Antigen receptor signaling to NF-κB via CARMA1, BCL10, and MALT1. Cold Spring Harb Perspect Biol 2:a003004PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Hogan PG, Chen L, Nardone J, Rao A (2003) Transcriptional regulation by calcium, calcineruin, and NFAT. Genes Dev 17:2205–2232PubMedCrossRefGoogle Scholar
  12. 12.
    Sieber M, Baumgrass R (2009) Novel inhibitors of the calcineurin/NFATc hub–alternatives to CsA and FK506? Cell Commun Signal 7:25PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Rodríguez A, Roy J, Martínez-Martínez S, López-Maderuelo MD, Niño-Moreno P, Ortí L, Pantoja-Uceda D, Pineda-Lucena A, Cyert MS, Redondo JM (2009) A conserved docking surface on calcineurin mediates interaction with substrates and immunosuppressants. Mol Cell 33:616–626PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Yang WC, Collette Y, Nunès JA, Olive D (2000) Tec kinases: a family with multiple roles in immunity. Immunity 12:373–382PubMedCrossRefGoogle Scholar
  15. 15.
    Lin TA, McIntyre KW, Das J, Liu C, O’Day KD, Penhallow B, Hung CY, Whitney GS, Shuster DJ, Yang X, Townsend R, Postelnek J, Spergel SH, Lin J, Moquin RV, Furch JA, Kamath AV, Zhang H, Marathe PH, Perez-Villar JJ, Doweyko A, Killar L, Dodd JH, Barrish JC, Wityak J, Kanner SB (2004) Selective Itk inhibitors block T-cell activation and murine lung inflammation. Biochemistry 43:11056–11062PubMedCrossRefGoogle Scholar
  16. 16.
    Mahajan S, Ghosh S, Sudbeck EA, Zheng Y, Downs S, Hupke M, Uckun FM (1999) Rational design and synthesis of a novel anti-leukemic agent targeting Bruton’s tyrosine kinase (BTK), LMF-A13 [α-cyano-β-hydroxy-β-methyl-N-(2,5-dibromophenyl)propenamide]. J Biol Chem 274:9587–9599PubMedCrossRefGoogle Scholar
  17. 17.
    Pan Z, Scheerens H, Li SJ, Schultz BE, Sprengeler PA, Burrill LC, Mendonca RV, Sweeney MD, Scott KCK, Grothaus PG, Jeffery DA, Spoerke JM, Honigberg LA, Young PR, Dalrymple SA, Palmer JT (2007) Discovery of selective irreversible inhibitors for Burton’s tyrosine kinase. ChemMedChem 2:58–61PubMedCrossRefGoogle Scholar
  18. 18.
    Honigberg LA, Smith AM, Sirisawad M, Verner E, Loury D, Chang B, Li S, Pan Z, Thamm DH, Miller RA, Buggy JJ (2010) The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci USA 107:13075–13080PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Di Paolo JA, Huang T, Balazs M, Barbosa J, Barck KH, Bravo BJ, Carano RAD, Darrow J, Davies DR, DeForge LE, Diehl L, Ferrando R, Gallion SL, Giannetti AM, Gribling P, Hurez V, Hymowitz SG, Jones R, Kropf JE, Lee WP, Maciejewski PM, Mitchell SA, Rong H, Staker BL, Whitney JA, Yeh S, Young WB, Yu C, Zhang J, Reif K, Currie KS (2011) Specific Btk inhibition suppresses B cell- and myeloid cell-mediated arthritis. Nat Chem Biol 7:41–50PubMedCrossRefGoogle Scholar
  20. 20.
    Thome M (2008) Multifunctional roles for MALT1 in T-cell activation. Nat Rev Immunol 8:495–500PubMedCrossRefGoogle Scholar
  21. 21.
    Rebeaud F, Hailfinger S, Posevitz-Fejfar A, Tapernoux M, Moser R, Rueda D, Gaide O, Guzzardi M, Iancu EM, Rufer N, Fasel N, Thome M (2008) The proteolytic activity of the paracaspase MALT1 is key in T cell activation. Nat Immunol 9:272–281PubMedCrossRefGoogle Scholar
  22. 22.
    Fontan L, Yang C, Kabaleeswaran V, Volpon L, Osborne MJ, Beltran E, Garcia M, Cerchietti L, Shaknovich R, Yang SN, Fang F, Gascoyne RD, Martinez-Climent JA, Glickman JF, Borden K, Wu H, Melnick A (2012) MALT1 small molecule inhibitors specifically suppress ABC-DLBCL in vitro and in vivo. Cancer Cell 22:812–824PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Nagel D, Spranger S, Vincendeau M, Grau M, Raffegerst S, Kloo B, Hlahla D, Neuenschwander M, Peter von Kries J, Hadian K, Dörken B, Lenz P, Lenz G, Schendel DJ, Krappmann D (2012) Pharmacologic inhibition of MALT1 protease by phenothiazines as a therapeutic approach for the treatment of aggressive ABC-DLBCL. Cancer Cell 22:825–837PubMedCrossRefGoogle Scholar
  24. 24.
    Barry M, Bleackley RC (2002) Cytotoxic T lymphocytes: all roads lead to death. Nat Rev Immunol 2:401–409PubMedGoogle Scholar
  25. 25.
    Law RHP, Lukoyanova N, Voskoboinik I, Caradoc-Davies TT, Baran K, Dunstone MA, D’Angelo ME, Orlova EV, Coulibaly F, Verschoor S, Browne KA, Ciccone A, Kuiper MJ, Bird PI, Trapani JA, Saibil HR, Whisstock JC (2010) The structural basis for membrane binding and pore formation by lymphocyte perforin. Nature 468:447–451PubMedCrossRefGoogle Scholar
  26. 26.
    Baran K, Dunstone M, Chia J, Ciccone A, Browne KA, Clarke CJP, Lukoyanova N, Saibil H, Whisstock JC, Voskoboinik I, Trapani JA (2009) The molecular basis for perforin oligomerization and transmembrane pore assembly. Immunity 30:684–695PubMedCrossRefGoogle Scholar
  27. 27.
    Uellner R, Zvelebil MJ, Hopkins J, Jones J, MacDougall LK, Morgan BP, Podack E, Waterfield MD, Griffiths GM (1997) Perforin is activated by a proteolytic cleavage during biosynthesis which reveals a phospholipid-binding C2 domain. EMBO J 16:7287–7296PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Brennan AJ, Chia J, Browne KA, Ciccone A, Ellis S, Lopez JA, Susanto O, Verschoor S, Yagita H, Whisstock JC, Trapani JA, Voskoboinik I (2011) Protection from endogenous perforin: glycans and the C terminus regulate exocytic trafficking in cytotoxic lymphocytes. Immunity 34:879–892PubMedCrossRefGoogle Scholar
  29. 29.
    Cullen SP, Brunet M, Martin SJ (2010) Granzymes in cancer and immunity. Cell Death Differ 17:616–623PubMedCrossRefGoogle Scholar
  30. 30.
    Chowdhury D, Lieberman J (2008) Death by a thousand cuts: granzyme pathways of programmed cell death. Annu Rev Immunol 26:389–420PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Krzewski K, Coligan JE (2012) Human NK cell lytic granules and regulation of their exocytosis. Front Immunol 3:335PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Lena G, Trapani JA, Sutton VR, Ciccone A, Browne KA, Smyth MJ, Denny WA, Spicer JA (2008) Dihydrofuro[3,4-c]pyridinones as inhibitors of the cytolytic effects of the pore-forming glycoprotein perforin. J Med Chem 51:7614–7624PubMedCrossRefGoogle Scholar
  33. 33.
    Kam CM, Hudig D, Powers JC (2000) Granzymes (lymphocyte serine proteases): characterization with natural and synthetic substrates and inhibitors. Biochim Biophys Acta 1477:307–323PubMedCrossRefGoogle Scholar
  34. 34.
    Willoughby CA, Bull HG, Garcia-Calvo M, Jiang J, Chapman KT, Thornberry NA (2002) Discovery of potent, selective human granzyme B inhibitors that inhibit CTL mediated apoptosis. Bioorg Med Chem Lett 12:2197–2200PubMedCrossRefGoogle Scholar
  35. 35.
    Mahrus S, Craik CS (2005) Selective chemical functional probes of granzymes A and B reveal granzyme B is a major effector of natural killer cell-mediated lysis of target cells. Chem Biol 12:567–577PubMedCrossRefGoogle Scholar
  36. 36.
    Dell’Angelica EC, Mullins C, Caplan S, Bonifacino JS (2000) Lysosome-related organelles. FASEB J 14:1265–1278PubMedCrossRefGoogle Scholar
  37. 37.
    Kataoka T, Takaku K, Magae J, Shinohara N, Takayama H, Kondo S, Nagai K (1994) Acidification is essential for maintaining the structure and function of lytic granules of CTL. J Immunol 153:3938–3947PubMedGoogle Scholar
  38. 38.
    Kataoka T, Sato M, Kondo S, Nagai K (1996) Estimation of pH and the number of lytic granules in a CD8+ CTL clone treated with an inhibitor of vacuolar type H+-ATPase, concanamycin A. Biosci Biotechnol Biochem 60:1729–1731PubMedCrossRefGoogle Scholar
  39. 39.
    Kataoka T, Togashi K, Takayama H, Takaku K, Nagai K (1997) Inactivation and proteolytic degradation of perforin within lytic granules upon neutralization of acidic pH. Immunology 91:493–500PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Togashi K, Kataoka T, Nagai K (1997) Characterization of a series of vacuolar type H+-ATPase inhibitors on CTL-mediated cytotoxicity. Immunol Lett 55:139–144PubMedCrossRefGoogle Scholar
  41. 41.
    Kataoka T, Shinohara N, Takayama H, Takaku K, Kondo S, Yonehara S, Nagai K (1996) Concanamycin A, a powerful tool for characterization and estimation of contribution of perforin- and Fas-based lytic pathways in cell-mediated cytotoxicity. J Immunol 156:3678–3686PubMedGoogle Scholar
  42. 42.
    Strasser A, Jost PJ, Nagata S (2009) The many roles of FAS receptor signaling in the immune system. Immunity 20:180–192CrossRefGoogle Scholar
  43. 43.
    Lavrik IN, Krammer PH (2012) Regulation of CD95/Fas signaling at the DISC. Cell Death Differ 19:36–41PubMedCrossRefGoogle Scholar
  44. 44.
    Boatright KM, Salvesen GS (2003) Mechanisms of caspase activation. Curr Opin Immunol 15:725–731CrossRefGoogle Scholar
  45. 45.
    Schafer ZT, Kornbluth S (2006) The apoptosome: physiological, developmental, and pathological modes of regulation. Dev Cell 10:549–561PubMedCrossRefGoogle Scholar
  46. 46.
    Berger AB, Sexton KB, Bogyo M (2006) Commonly used caspase inhibitors designed based on substrate specificity profiles lack selectivity. Cell Res 16:961–963PubMedCrossRefGoogle Scholar
  47. 47.
    Linton SD, Aja T, Armstrong RA, Bai X, Chen LS, Chen N, Ching B, Contreras P, Diaz JL, Fisher CD, Fritz LC, Gladstone P, Groessl T, Gu X, Herrmann J, Hirakawa BP, Hoglen NC, Jahangiri KG, Kalish VJ, Karanewsky DS, Kodandapani L, Krebs J, McQuiston J, Meduna SP, Nalley K, Robinson ED, Sayers RO, Sebring K, Spada AP, Ternansky RJ, Tomaselli KJ, Ullman BR, Valentino KL, Weeks S, Winn D, Wu JC, Yeo P, Zhang CZ (2005) First-in-class pan caspase inhibitor developed for the treatment of liver disease. J Med Chem 48:6779–6782PubMedCrossRefGoogle Scholar
  48. 48.
    Bando M, Hasegawa M, Tsuboi Y, Miyake Y, Shiina M, Ito M, Handa H, Nagai K, Kataoka T (2003) The mycotoxin penicillic acid inhibits Fas ligand-induced apoptosis by blocking self-processing of caspase-8 in death-inducing signaling complex. J Biol Chem 278:5786–5793PubMedCrossRefGoogle Scholar
  49. 49.
    Kakeya H, Miyake Y, Shoji M, Kishida S, Hayashi Y, Kataoka T, Osada H (2003) Novel non-peptide inhibitors targeting death receptor-mediated apoptosis. Bioorg Med Chem Lett 13:3743–3746PubMedCrossRefGoogle Scholar
  50. 50.
    Miyake Y, Kakeya H, Kataoka T, Osada H (2003) Epoxycyclohexenone inhibits Fas-mediated apoptosis by blocking activation of pro-caspase-8 in the death-inducing signaling complex. J Biol Chem 278:11213–11220PubMedCrossRefGoogle Scholar
  51. 51.
    Mitsui T, Miyake Y, Kakeya H, Osada H, Kataoka T (2004) ECH, an epoxycyclohexenone derivative that specifically inhibits Fas ligand-dependent apoptosis in CTL-mediated cytotoxicity. J Immunol 172:3428–3436PubMedCrossRefGoogle Scholar
  52. 52.
    Mitsui T, Miyake Y, Kakeya H, Hayashi Y, Osada H, Kataoka T (2005) RKTS-33, an epoxycyclohexenone derivative that specifically inhibits Fas ligand-dependent apoptosis in CTL-mediated cytotoxicity. Biosci Biotechnol Biochem 69:1923–1928PubMedCrossRefGoogle Scholar
  53. 53.
    He JS, Ostergaard HL (2007) CTLs contain and use intracellular stores of FasL distinct from cytolytic granules. J Immunol 179:2339–2348PubMedCrossRefGoogle Scholar
  54. 54.
    Kataoka T, Taniguchi M, Yamada A, Suzuki H, Hamada S, Magae J, Nagai K (1996) Identification of low molecular weight probes on perforin- and Fas-based killing mediated by cytotoxic T lymphocytes. Biosci Biotechnol Biochem 60:1726–1728PubMedCrossRefGoogle Scholar
  55. 55.
    Akira S, Takeda K (2004) Toll-like receptor signaling. Nat Rev Immunol 4:499–511PubMedCrossRefGoogle Scholar
  56. 56.
    Kawai T, Akira S (2011) Toll-like receptors and their cross talk with other innate receptors in infection and immunity. Immunity 34:637–650PubMedCrossRefGoogle Scholar
  57. 57.
    Bhoj VG, Chen ZJ (2009) Ubiquitylation in innate and adaptive immunity. Nature 458:430–437PubMedCrossRefGoogle Scholar
  58. 58.
    Lee CC, Avalos AM, Ploegh HL (2012) Accessory molecules for toll-like receptors and their function. Nat Rev Immunol 12:168–179PubMedPubMedCentralGoogle Scholar
  59. 59.
    Muta T, Takeshige K (2001) Essential roles of CD14 and lipopolysaccharide-binding protein for activation of toll-like receptor (TLR)2 as well as TLR4. Eur J Biochem 268:4580–4589PubMedCrossRefGoogle Scholar
  60. 60.
    Kim HM, Park BS, Kim JI, Kim SE, Lee J, Oh SC, Enkhbayar P, Matsushima N, Lee H, Yoo OJ, Lee JO (2007) Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist eritoran. Cell 130:906–917PubMedCrossRefGoogle Scholar
  61. 61.
    Shirey KA, Lai W, Scott AJ, Lipsky M, Mistry P, Pletneva LM, Karp CL, McAlees J, Gioannini TL, Weiss J, Chen WH, Ernst RK, Rossignol DP, Gusovsky F, Blanco JC, Vogel SN (2013) The TLR4 antagonist eritoran protects mice from lethal influenza infection. Nature 497:498–502PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Matsunaga N, Tsuchimori N, Matsumoto T, Ii M (2011) TAK-242 (resatorvid), a small-molecule inhibitor of toll-like receptor (TLR) 4 signaling, binds selectively to TLR4 and interferes with interactions between TLR4 and its adaptor molecules. Mol Pharmacol 79:34–41PubMedCrossRefGoogle Scholar
  63. 63.
    Bochkov VN, Kadl A, Huber J, Gruber F, Binder BR, Leitinger N (2002) Protective role of phospholipid oxidation products in endotoxin-induced tissue damage. Nature 419:77–81PubMedCrossRefGoogle Scholar
  64. 64.
    Cheng K, Wang X, Yin H (2011) Small-molecule inhibitors of the TLR3/dsRNA complex. J Am Chem Soc 133:3764–3767PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Shukla NM, Mutz CA, Malladi SS, Warshakoon HJ, Balakrishna R, David SA (2012) Toll-like receptor (TLR)-7 and -8 modulatory activities of dimeric imdazoquinolines. J Med Chem 55:1106–1116PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Franklin BS, Ishizaka ST, Lamphier M, Gusovsky F, Hansen H, Rose J, Zheng W, Ataíde MA, Oliveira RB, Golenbock DT, Gazzinelli RT (2011) Therapeutical targeting of nucleic acid-sensing toll-like receptors prevents experimental cerebral malaria. Proc Natl Acad Sci USA 108:3689–3694PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Lund J, Sato A, Akira S, Medzhitov R, Iwasaki A (2003) Toll-like receptor 9-mediated recognition of herpes simplex virus by plasmacytoid dendritic cells. J Exp Med 198:513–520PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Kužnik A, Benčina M, Švajger U, Jeras M, Rozman B, Jerala R (2011) Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J Immunol 186:4794–4804PubMedCrossRefGoogle Scholar
  69. 69.
    Wang Z, Liu J, Sudom A, Ayres M, Li S, Wesche H, Powers JP, Walker NPC (2006) Crystal structures of IRAK-4 kinase in complex with inhibitors: a serine/threonine kinase with tyrosine as a gatekeeper. Structure 14:1835–1844PubMedCrossRefGoogle Scholar
  70. 70.
    Wang Z, Weshe H, Stevens T, Walker N, Yeh WC (2009) IRAK-4 inhibitors for inflammation. Curr Top Med Chem 9:724–737PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Feldman RI, Wu JM, Polokoff MA, Kochanny MJ, Dinter H, Zhu D, Biroc SL, Alicke B, Bryant J, Yuan S, Buckman BO, Lentz D, Ferrer M, Whitlow M, Adler M, Finster S, Chang Z, Arnaiz DO (2005) Novel small molecule inhibitors of 3-phosphoinositide-dependent kinase-1. J Biol Chem 280:19867–19874PubMedCrossRefGoogle Scholar
  72. 72.
    Clark K, Plater L, Peggie M, Cohen P (2009) Use of the pharmacological inhibitor BX-795 to study the regulation and physiological roles of TBK1 and IκB kinase ε. J Biol Chem 284:14136–14146PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Ninomiya-Tsuji J, Kajino T, Ono K, Ohtomo T, Matsumoto M, Shiina M, Mihara M, Tsuchiya M, Matsumoto K (2003) A resorcylic acid lactone, 5Z-7-oxozeaenol, prevents inflammation by inhibiting the catalytic activity of TAK1 MAPK kinase kinase. J Biol Chem 278:18485–18490PubMedCrossRefGoogle Scholar
  74. 74.
    Wu J, Powell F, Larsen NA, Lai Z, Byth KF, Read J, Gu RF, Roth M, Toader D, Saeh JC, Chen H (2013) Mechanism and in vitro pharmacology of TAK1 inhibition by (5Z)-7-oxozeaenol. ACS Chem Biol 8:643–650PubMedCrossRefGoogle Scholar
  75. 75.
    Rathinam VAK, Vanaja SK, Fitzgerald KA (2012) Regulation of inflammasome signaling. Nat Immunol 13:333–342PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Man SM, Kanneganti TD (2016) Converging roles of caspases in inflammasome activation, cell death and innate immunity. Nat Rev Immunol 16:7–21PubMedCrossRefGoogle Scholar
  77. 77.
    Schroder K, Tschopp J (2010) The inflammasomes. Cell 140:821–832PubMedCrossRefGoogle Scholar
  78. 78.
    Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M, Lee WP, Weinrauch Y, Monack DM, Dixit VM (2006) Cryopyrin activates the inflammasome in response to toxin and ATP. Nature 440:228–232PubMedCrossRefGoogle Scholar
  79. 79.
    Muñoz-Planillo R, Kuffa P, Martínez-Colón G, Smith BL, Rajendiran TM, Nuñez G (2013) K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38:1142–1153PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Lamkanfi M, Mueller JL, Vitari AC, Misaghi S, Fedorova A, Deshayes K, Lee WP, Hoffman HM, Dixit VM (2009) Glyburide inhibits the cryopyrin/Nalp3 inflammasome. J Cell Biol 187:61–70PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Hett EC, Slater LH, Mark KG, Kawate T, Monks BG, Stutz A, Latz E, Hung DT (2013) Chemical genetics reveals a kinase-independent role for protein kinase R in pyroptosis. Nat Chem Biol 9:398–405PubMedCrossRefGoogle Scholar
  82. 82.
    Laliberte RE, Perregaux DG, Hoth LR, Rosner PJ, Jordan CK, Peese KM, Eggler JF, Dombroski MA, Geoghegan KF, Gabel CA (2003) Glutathione S-transferase omega 1-1 is a target of cytokine release inhibitory drugs and may be responsible for their effect on interleukin-1β posttranslational processing. J Biol Chem 278:16567–16578PubMedCrossRefGoogle Scholar
  83. 83.
    Coll RC, Robertson AAB, Chae JJ, Higgins SC, Muñoz-Planillo R, Inserra MC, Vetter I, Dungan LS, Monks BG, Stutz A, Croker DE, Butler MS, Haneklaus M, Sutton CE, Nuñez G, Latz E, Kastner DL, Mills KHG, Masters SL, Schroder K, Cooper MA, O’Neill LAJ (2015) A small molecule inhibitor of the NLRP3 inflammasome is a potential therapeutic for inflammatory diseases. Nat Med 21:248–255PubMedPubMedCentralGoogle Scholar
  84. 84.
    Youm YH, Nguyen KY, Grant RW, Goldberg EL, Bodogai M, Kim D, D’Agostino D, Planavsky N, Lupfer C, Kanneganti TD, Kang S, Horvath TL, Fahmy TM, Crawford PA, Biragyn A, Alnemri E, Dixit VD (2015) Ketone body β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med 21:263–269PubMedPubMedCentralGoogle Scholar
  85. 85.
    Tingo-Aranjuez JT, Asara JM, Abbott DW (2010) Inhibition of RIP2’s tyrosine kinase activity limits NOD2-driven cytokine responses. Genes Dev 24:2666–2677CrossRefGoogle Scholar
  86. 86.
    Baldwin AG, Brough D, Freeman S (2016) Inhibiting the inflammasome: a chemical perspective. J Med Chem 59:1691–1710PubMedCrossRefGoogle Scholar
  87. 87.
    Ekert PG, Silke J, Vaux DL (1999) Caspase inhibitors. Cell Death Differ 6:1081–1086PubMedCrossRefGoogle Scholar
  88. 88.
    Callus BA, Vaux DL (2007) Caspase inhibitors: viral, cellular and chemical. Cell Death Differ 14:73–78PubMedCrossRefGoogle Scholar
  89. 89.
    Groß O, Yazdi AS, Thomas CJ, Masin M, Heinz LX, Guarda G, Quadroni M, Drexler SK, Tschopp J (2012) Inflammasome activators induce interleukin-1α secretion via distinct pathways with differential requirement for the protease function of caspase-1. Immunity 36:388–400PubMedCrossRefGoogle Scholar
  90. 90.
    Rudolphi K, Gerwin N, Verzijl N, van der Kraan P, van den Berg W (2003) Pralnacasan, an inhibitor of interleukin-1β converting enzyme, reduces joint damage in two murine models of osteoarthritis. Osteoarthr Cartil 11:738–746PubMedCrossRefGoogle Scholar
  91. 91.
    Wannamaker W, Davies R, Namchuk M, Pollard J, Ford P, Ku G, Decker C, Charifson P, Weber P, Germann UA, Kuida K, Randle JC (2007) (S)-1-((S)-2-{[1-(4-amino-3-chloro-phenyl)-methanoyl]-amino}-3,3-dimethyl-butanoyl)-pyrrolidine-2-caboxylic acid ((2R,3S)-2-ethoxy-5-oxo-tetrahydro-furan-3-yl)-amide (VX-765), an orally available selective interleukin (IL)-converting enzyme/caspase-1 inhibitor, exhibits potent anti-inflammatory activities by inhibiting the release of IL-1β and IL-18. J Pharmacol Exp Ther 321:509–516PubMedCrossRefGoogle Scholar
  92. 92.
    Scheer JM, Romanowski MJ, Wells JA (2006) A common allosteric site and mechanism in caspases. Proc Natl Acad Sci USA 103:7595–7600PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Feldman T, Kabaleeswaran V, Jang SB, Antczak C, Djaballah H, Wu H, Jiang X (2012) A class of allosteric caspase inhibitors identified by high-throughput screening. Mol Cell 47:585–595PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Loo YM, Gare M Jr (2011) Immune signaling by RIG-I-like receptors. Immunity 34:680–692PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Yoneyama M, Fujita T (2009) RNA recognition and signal transduction by RIG-I-like receptors. Immunol Rev 227:54–65PubMedCrossRefGoogle Scholar
  96. 96.
    Goubau D, Deddouche S, Reis e Sousa C (2013) Cytosolic sensing of viruses. Immunity 38:855–869PubMedCrossRefGoogle Scholar
  97. 97.
    Ablasser A, Bauernfeind F, Hartmann G, Latz E, Fitzgerald KA, Hornung V (2009) RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat Immunol 10:1065–1072PubMedCrossRefGoogle Scholar
  98. 98.
    Ranjith-Kumar CT, Murali A, Dong W, Srisathiyanarayanan D, Vaughan R, Ortiz-Alacantara J, Bhardwaj K, Li X, Li P, Kao CC (2009) Agonist and antagonist recognition by RIG-I, a cytoplasmic innate immunity receptor. J Biol Chem 284:1155–1165PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Ranjith-Kumar CT, Lai Y, Sarisky RT, Kao CC (2010) Green tea catechin, epigallocatechin gallate, suppresses signaling by the dsRNA innate immune receptor RIG-I. PLoS One 9:e12878CrossRefGoogle Scholar
  100. 100.
    Hardison SE, Brown GD (2012) C-type lectin receptors orchestrate anti-fungal immunity. Nat Immunol 13:817–822PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Kerrigan AM, Brown GD (2011) Syk-coupled C-type lectins in immunity. Trends Immunol 32:151–156PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Mócsai A, Ruland J, Tybulewicz VLJ (2010) The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol 10:387–402PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Pamuk ON, Tsokos GC (2010) Spleen tyrosine kinase inhibition in the treatment of autoimmune, allergic and autoinflammatory diseases. Arthritis Res Ther 12:222PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    D’Cruz OJ, Uckun FM (2012) Targeting spleen tyrosine kinase (SYK) for treatment of human disease. J Pharm Drug Deliv Res 1:2CrossRefGoogle Scholar
  105. 105.
    Geahlen RL (2014) Getting Syk: spleen tyrosine kinase as a therapeutic target. Trends Pharmacol Sci 35:414–422PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Kwon JY, Seo SG, Heo YS, Yue S, Cheng JX, Lee KW, Kim KH (2012) Piceatannol, natural polyphenolic stilbene, inhibits adipogenesis via modulation of mitotic clonal expansion and insulin receptor-dependent insulin signaling in early phase of differentiation. J Biol Chem 287:11566–11578PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Moriya K, Rivera J, Odom S, Sakuma Y, Muramoto K, Yoshiuchi T, Miyamoto M, Yamada K (1997) ER-27319, an acridone-related compound, inhibits release of antigen-induced allergic mediators from mast cells by selective inhibition of Fcε receptor I-mediated activation of Syk. Proc Natl Acad Sci USA 94:12539–12544PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Hayden MS, Ghosh S (2014) Regulation of NF-κB by TNF family cytokines. Semin Immunol 26:253–266PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Sasaki K, Iwai K (2015) Roles of linear ubiquitinylation, a crucial regulator of NF-κB and cell death, in the immune system. Immunol Rev 266:175–189PubMedCrossRefGoogle Scholar
  110. 110.
    Perkins ND (2006) Post-translational modifications regulating the activity and function of the nuclear factor kappa B pathway. Oncogene 25:6717–6730PubMedCrossRefGoogle Scholar
  111. 111.
    Karin M, Greten FR (2005) NF-κB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5:749–759PubMedCrossRefGoogle Scholar
  112. 112.
    Kataoka T (2009) Chemical biology of inflammatory cytokine signaling. J Antibiot 62:655–667PubMedCrossRefGoogle Scholar
  113. 113.
    Gilmore TD, Herscovitch M (2006) Inhibitors of NF-κB signaling: 785 and counting. Oncogene 25:6887–6899PubMedCrossRefGoogle Scholar
  114. 114.
    Sen N, Paul BD, Gadalla MM, Mustafa AK, Sen T, Xu R, Kim S, Snyder SH (2012) Hydrogen sulfide-linked sulfhydration of NF-κB mediates its antiapoptotic actions. Mol Cell 45:13–24PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Palombella VJ, Conner EM, Fuseler JW, Destree A, Davis JM, Laroux FS, Wolf RE, Huang J, Brand S, Elliott PJ, Lazarus D, McCormack T, Parent L, Stein R, Adams J, Grisham MB (1998) Role of the proteasome and NF-κB in streptococcal cell wall-induced polyarthritis. Proc Natl Acad Sci USA 95:15671–15676PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Aikawa Y, Yamamoto M, Yamamoto T, Morimoto K, Takana K (2002) An anti-rheumatic agent T-614 inhibits NF-κB activation in LPS- and TNF-α-stimulated THP-1 cells without interfering with IκBα degradation. Inflamm Res 51:188–194PubMedCrossRefGoogle Scholar
  117. 117.
    Pierce JW, Schoenleber R, Jesmok G, Best J, Moore SA, Collins T, Gerritsen ME (1997) Novel inhibitors of cytokine-induced IκBα phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo. J Biol Chem 272:21096–21103PubMedCrossRefGoogle Scholar
  118. 118.
    Juliana C, Fernandes-Alnemri T, Wu J, Datta P, Solorzano L, Yu JW, Meng R, Quong AA, Latz E, Scott CP, Alnemri ES (2010) Anti-inflammatory compounds parthenolide and Bay 11-7082 are direct inhibitors of the inflammasome. J Biol Chem 285:9792–9802PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Krishnan N, Bencze G, Cohen P, Tonks NK (2013) The anti-inflammatory compound Bay-11-7082 is a potent inhibitor of protein tyrosine phosphatases. FEBS J 280:2830–2841PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  1. 1.Department of Applied BiologyKyoto Institute of TechnologyKyotoJapan

Personalised recommendations