Advertisement

Bioprobes pp 1-10 | Cite as

Trends in Bioprobe Research

  • Hiroyuki OsadaEmail author
Chapter
  • 448 Downloads

Abstract

The term “bioprobe” was used for the first time in the previous version of this book [1]. Bioprobes were defined as small molecules which are useful not only for biochemical research but also for the source of drug candidates with diverse activities. Historically, microbial metabolites have been quite useful not only as medicines but also as bioprobes. As a typical example, penicillin was originally discovered as a therapeutic agent against bacterial infectious diseases. Afterwards, research on the mode of action of penicillin gave us the insight on the structure and the biosynthesizing mechanism of the bacterial cell wall [2, 3]. Another well-known example is that the reverse transcriptase was discovered by the aid of daunomycin and actinomycin D. In the twentieth century, the central dogma of molecular biology suggested that the genetic information flows from DNA to RNA, and then finally to protein. However, some tumor viruses transcribe DNA from RNA by reverse transcriptase which is RNA-dependent DNA polymerase [4, 5]. Specific inhibitors of DNA and RNA synthesis were used to prove the template of the polymerase.

Keywords

Screening PPI Target Identification Cell Morphology Profiling Proteome Affinity Beads DARTS CETSA 

References

  1. 1.
    Osada H (2000) Trends in bioprobe research. In: Osada H (ed) Bioprobes. Springer, Tokyo/New York, pp 1–14CrossRefGoogle Scholar
  2. 2.
    Park J, Strominger J (1957) Mode of action of penicillin. Science 125:99–101CrossRefPubMedGoogle Scholar
  3. 3.
    Trucco RE, Pardee AB (1957) Synthesis of Escherichia coli cell walls in the presence of penicillin. J Biol Chem 230:435–446Google Scholar
  4. 4.
    Gallo R (1972) RNA-dependent DNA polymerase in viruses and cells: views on the current state. Blood 39:117–137PubMedGoogle Scholar
  5. 5.
    Temin H, Baltimore D (1972) RNA-directed DNA synthesis and RNA tumor viruses. Adv Virus Res 17:129–186CrossRefPubMedGoogle Scholar
  6. 6.
    Schreiber SL (1991) Chemistry and biology of immunophilins and their immunosuppressive ligands. Science 251:283–287CrossRefPubMedGoogle Scholar
  7. 7.
    Osada H (1998) Bioprobes for investigating mammalian cell cycle control. J Antibiot 51:973–981CrossRefPubMedGoogle Scholar
  8. 8.
    Crump A, Omura S (2011) Ivermectin, ‘wonder drug’ from Japan: the human use perspective. Proc Jpn Acad Ser B Phys Biol Sci 87:13–28CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Osada H (2001) An overview on the diversity of actinomycete metabolites. Actinomycetol 15:11–14CrossRefGoogle Scholar
  10. 10.
    Swinney DC, Anthony J (2011) How were new medicines discovered? Nat Rev Drug Discov 10:507–519CrossRefPubMedGoogle Scholar
  11. 11.
    Futamura Y, Kawatani M, Kazami S, Tanaka K, Muroi M, Shimizu T, Tomita K, Watanabe N, Osada H (2012) MorphoBase, an encyclopedic cell morphology database, and its use for drug target identification. Chem Biol 19:1620–1630CrossRefPubMedGoogle Scholar
  12. 12.
    Takahashi H, Osada H, Koshino H, Sasaki M, Onose R, Nakakoshi M, Yoshihama M, Isono K (1992) Reveromycins, new inhibitors of eukaryotic cell growth II. Biological activities. J Antibiot 45:1414–1419CrossRefPubMedGoogle Scholar
  13. 13.
    Futamura Y, Kawatani M, Muroi M, Aono H, Nogawa T, Osada H (2013) Identification of a molecular target of a novel fungal metabolite, pyrrolizilactone, by phenotypic profiling systems. Chembiochem 14:2456–2463CrossRefPubMedGoogle Scholar
  14. 14.
    Futamura Y, Muroi M, Osada H (2013) Target identification of small molecules based on chemical biology approaches. Mol BioSyst 9:897–914CrossRefPubMedGoogle Scholar
  15. 15.
    Arkin M, Tang Y, Wells J (2014) Small-molecule inhibitors of protein–protein interactions: progressing toward the reality. Chem Biol 21:1102–1114CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Watanabe N, Osada H (2016) Small molecules that target phosphorylation dependent protein–protein interaction. Bioorg Med Chem 24:3246–3254CrossRefPubMedGoogle Scholar
  17. 17.
    Yanai T, Kurosawa A, Nikaido Y, Nakajima N, Saito T, Osada H, Konno A, Hirai H, Takeda S (2016) Identification and molecular docking studies for novel inverse agonists of SREB, super conserved receptor expressed in brain. Genes Cells 21:717–727CrossRefPubMedGoogle Scholar
  18. 18.
    Watanabe N, Osada H (2012) Phosphorylation-dependent protein–protein interaction modules as potential molecular targets for cancer therapy. Curr Drug Targets 13:1654–1658CrossRefPubMedGoogle Scholar
  19. 19.
    Elia AE, Cantley LC, Yaffe MB (2003) Proteomic screen finds pSer/pThr-binding domain localizing Plk1 to mitotic substrates. Science 299:1228–1231CrossRefPubMedGoogle Scholar
  20. 20.
    Watanabe N, Sekine T, Takagi M, Iwasaki JI, Imamoto N, Kawasaki H, Osada H (2009) Deficiency in chromosome congression by the inhibition of PLK1 polo box domain–dependent recognition. J Biol Chem 284:2344–2353CrossRefPubMedGoogle Scholar
  21. 21.
    Kondoh Y, Honda K, Osada H (2015) Construction and application of a photo-cross-linked chemical array. Methods Mol Biol 1263:29–41CrossRefPubMedGoogle Scholar
  22. 22.
    Miyazaki I, Simizu S, Ichimiya H, Kawatani M, Osada H (2008) Robust and systematic drug screening method using chemical arrays and the protein library: identification of novel inhibitors of carbonic anhydrase II. Biosci Biotechnol Biochem 72:2739–2749CrossRefPubMedGoogle Scholar
  23. 23.
    Kanoh N, Kyo M, Inamori K, Ando A, Asami A, Nakao A, Osada H (2006) SPR imaging measurement of photo-cross-linked small molecule microarrays on gold. Annal Chem 78:2226–2230CrossRefGoogle Scholar
  24. 24.
    Kondoh Y, Osada H (2013) High-throughput screening identifies small molecule inhibitors of molecular chaperones. Curr Pharm Des 19:473–492CrossRefPubMedGoogle Scholar
  25. 25.
    MacBeath G, Schreiber SL (2000) Printing proteins as microarrays for high-throughput function determination. Science 289:1760–1763PubMedGoogle Scholar
  26. 26.
    Hergenrother P, Depew K, Schreiber S (2000) Small-molecule microarrays: covalent attachment and screening of alcohol-containing small molecules on glass slides. J Am Chem Soc 122:7849–7850CrossRefGoogle Scholar
  27. 27.
    Barnes-Seeman D, Park S, Koehler A, Schreiber S (2003) Expanding the functional group compatibility of small-molecule microarrays: discovery of novel calmodulin ligands. Angew Chem Int Ed Eng 42:2376–2379CrossRefGoogle Scholar
  28. 28.
    Kanoh N, Kumashiro S, Simizu S, Kondoh Y, Hatakeyama S, Tashiro H, Osada H (2003) Immobilization of natural products on glass slides by using a photoaffinity reaction and the detection of protein-small-molecule interactions. Angew Chem Int Ed 42:5584–5587CrossRefGoogle Scholar
  29. 29.
    Lomenick B, Hao R, Jonai N, Chin RM, Aghajan M, Warburton S, Wang J, Wu RP, Gomez F, Loo JA, Wohlschlegel JA, Vondriska TM, Pelletier J, Herschman HR, Clardy J, Clarke CF, Huang J (2009) Target identification using drug affinity responsive target stability (DARTS). Proc Natl Acad Sci U S A 106:21984–21989CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lomenick B, Olsen RW, Huang J (2011) Identification of direct protein targets of small molecules. ACS Chem Biol 6:34–46CrossRefPubMedGoogle Scholar
  31. 31.
    Martinez Molina D, Jafari R, Ignatushchenko M, Seki T, Larsson EA, Dan C, Sreekumar L, Cao Y, Nordlund P (2013) Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341:84–87CrossRefPubMedGoogle Scholar
  32. 32.
    Jafari R, Almqvist H, Axelsson H, Ignatushchenko M, Lundback T, Nordlund P, Martinez Molina D (2014) The cellular thermal shift assay for evaluating drug target interactions in cells. Nat Protoc 9:2100–2122CrossRefPubMedGoogle Scholar
  33. 33.
    Shoemaker RH (2006) The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 6:813–823CrossRefPubMedGoogle Scholar
  34. 34.
    Kong D, Yamori T (2012) JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs. Bioorg Med Chem 20:1947–1951CrossRefPubMedGoogle Scholar
  35. 35.
    Muroi M, Kazami S, Noda K, Kondo H, Takayama H, Kawatani M, Usui T, Osada H (2010) Application of proteomic profiling based on 2D-DIGE for classification of compounds according to the mechanism of action. Chem Biol 17:460–470CrossRefPubMedGoogle Scholar
  36. 36.
    Arita Y, Nishimura S, Matsuyama A, Yashiroda Y, Usui T, Boone C, Yoshida M (2011) Microarray-based target identification using drug hypersensitive fission yeast expressing ORFeome. Mol BioSyst 7:1463–1472CrossRefPubMedGoogle Scholar
  37. 37.
    Ohtsu Y, Ohba R, Imamura Y, Kobayashi M, Hatori H, Zenkoh T, Hatakeyama M, Manabe T, Hino M, Yamaguchi Y, Kataoka K, Kawaguchi H, Watanabe H, Handa H (2005) Selective ligand purification using high-performance affinity beads. Anal Biochem 338:245–252CrossRefPubMedGoogle Scholar
  38. 38.
    Kanoh N, Nakamura T, Honda K, Yamakoshi H, Iwabuchi Y, Osada H (2008) Distribution of photo-cross-linked products from 3-aryl-3-trifluoromethyl-diazirines and alcohols. Tetrahedron 64:5692–5698CrossRefGoogle Scholar
  39. 39.
    Kanoh N, Takayama H, Honda K, Moriya T, Teruya T, Simizu S, Osada H, Iwabuchi Y (2010) Cleavable linker for photo-cross-linked small-molecule affinity matrix. Bioconjug Chem 21:182–186CrossRefPubMedGoogle Scholar
  40. 40.
    Sato S, Kwon Y, Kamisuki S, Srivastava N, Mao Q, Kawazoe Y, Uesugi M (2007) Polyproline-rod approach to isolating protein targets of bioactive small molecules: isolation of a new target of indomethacin. J Am Chem Soc 129:873–880CrossRefPubMedGoogle Scholar
  41. 41.
    Saito A, Kawai K, Takayama H, Kanoh N, Sudo T, Osada H (2008) Improvement of photoaffinity SPR imaging platform and determination of binding site of p62/SQSTM1 to p38 MAP kinase. Chem Asian J 3:1607–1612CrossRefPubMedGoogle Scholar
  42. 42.
    Chin RM, Fu X, Pai MY, Vergnes L, Hwang H, Deng G, Diep S, Lomenick B, Meli VS, Monsalve GC, Hu E, Whelan SA, Wang JX, Jung G, Solis GM, Fazlollahi F, Kaweeteerawat C, Quach A, Nili M, Krall AS, Godwin HA, Chang HR, Faull KF, Guo F, Jiang M et al (2014) The metabolite alpha-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature 510:397–401PubMedPubMedCentralGoogle Scholar
  43. 43.
    Kawamura T, Kawatani M, Muroi M, Kondoh Y, Futamura Y, Aono H, Tanaka M, Honda K, Osada H (2016) Proteomic profiling of small-molecule inhibitors reveals dispensability of MTH1 for cancer cell survival. Sci Rep 6:26521CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Choi SM, Kim Y, Shim JS, Park JT, Wang RH, Leach SD, Liu JO, Deng C, Ye Z, Jang YY (2013) Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells. Hepatology 57:2458–2468CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Wada A, Hara S, Osada H (2014) Ribosome display and photo-cross-linking techniques for in vitro identification of target proteins of bioactive small molecules. Anal Chem 86:6768–6773CrossRefPubMedGoogle Scholar
  46. 46.
    Aretz J, Kondoh Y, Honda K, Anumala UR, Nazare M, Watanabe N, Osada H, Rademacher C (2016) Chemical fragment arrays for rapid druggability assessment. Chem Commun (Camb) 52:9067–9070CrossRefGoogle Scholar
  47. 47.
    Osada H (2016) Chemical and biological studies of reveromycin A. J Antibiot 69:723–730. doi: 10.1038/ja.2016.57 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  1. 1.Chemical Biology Research GroupRIKEN Center for Sustainable Resource ScienceWakoJapan

Personalised recommendations