Abstract
The term “bioprobe” was used for the first time in the previous version of this book [1]. Bioprobes were defined as small molecules which are useful not only for biochemical research but also for the source of drug candidates with diverse activities. Historically, microbial metabolites have been quite useful not only as medicines but also as bioprobes. As a typical example, penicillin was originally discovered as a therapeutic agent against bacterial infectious diseases. Afterwards, research on the mode of action of penicillin gave us the insight on the structure and the biosynthesizing mechanism of the bacterial cell wall [2, 3]. Another well-known example is that the reverse transcriptase was discovered by the aid of daunomycin and actinomycin D. In the twentieth century, the central dogma of molecular biology suggested that the genetic information flows from DNA to RNA, and then finally to protein. However, some tumor viruses transcribe DNA from RNA by reverse transcriptase which is RNA-dependent DNA polymerase [4, 5]. Specific inhibitors of DNA and RNA synthesis were used to prove the template of the polymerase.
Keywords
Screening PPI Target Identification Cell Morphology Profiling Proteome Affinity Beads DARTS CETSAReferences
- 1.Osada H (2000) Trends in bioprobe research. In: Osada H (ed) Bioprobes. Springer, Tokyo/New York, pp 1–14CrossRefGoogle Scholar
- 2.Park J, Strominger J (1957) Mode of action of penicillin. Science 125:99–101CrossRefPubMedGoogle Scholar
- 3.Trucco RE, Pardee AB (1957) Synthesis of Escherichia coli cell walls in the presence of penicillin. J Biol Chem 230:435–446Google Scholar
- 4.Gallo R (1972) RNA-dependent DNA polymerase in viruses and cells: views on the current state. Blood 39:117–137PubMedGoogle Scholar
- 5.Temin H, Baltimore D (1972) RNA-directed DNA synthesis and RNA tumor viruses. Adv Virus Res 17:129–186CrossRefPubMedGoogle Scholar
- 6.Schreiber SL (1991) Chemistry and biology of immunophilins and their immunosuppressive ligands. Science 251:283–287CrossRefPubMedGoogle Scholar
- 7.Osada H (1998) Bioprobes for investigating mammalian cell cycle control. J Antibiot 51:973–981CrossRefPubMedGoogle Scholar
- 8.Crump A, Omura S (2011) Ivermectin, ‘wonder drug’ from Japan: the human use perspective. Proc Jpn Acad Ser B Phys Biol Sci 87:13–28CrossRefPubMedPubMedCentralGoogle Scholar
- 9.Osada H (2001) An overview on the diversity of actinomycete metabolites. Actinomycetol 15:11–14CrossRefGoogle Scholar
- 10.Swinney DC, Anthony J (2011) How were new medicines discovered? Nat Rev Drug Discov 10:507–519CrossRefPubMedGoogle Scholar
- 11.Futamura Y, Kawatani M, Kazami S, Tanaka K, Muroi M, Shimizu T, Tomita K, Watanabe N, Osada H (2012) MorphoBase, an encyclopedic cell morphology database, and its use for drug target identification. Chem Biol 19:1620–1630CrossRefPubMedGoogle Scholar
- 12.Takahashi H, Osada H, Koshino H, Sasaki M, Onose R, Nakakoshi M, Yoshihama M, Isono K (1992) Reveromycins, new inhibitors of eukaryotic cell growth II. Biological activities. J Antibiot 45:1414–1419CrossRefPubMedGoogle Scholar
- 13.Futamura Y, Kawatani M, Muroi M, Aono H, Nogawa T, Osada H (2013) Identification of a molecular target of a novel fungal metabolite, pyrrolizilactone, by phenotypic profiling systems. Chembiochem 14:2456–2463CrossRefPubMedGoogle Scholar
- 14.Futamura Y, Muroi M, Osada H (2013) Target identification of small molecules based on chemical biology approaches. Mol BioSyst 9:897–914CrossRefPubMedGoogle Scholar
- 15.Arkin M, Tang Y, Wells J (2014) Small-molecule inhibitors of protein–protein interactions: progressing toward the reality. Chem Biol 21:1102–1114CrossRefPubMedPubMedCentralGoogle Scholar
- 16.Watanabe N, Osada H (2016) Small molecules that target phosphorylation dependent protein–protein interaction. Bioorg Med Chem 24:3246–3254CrossRefPubMedGoogle Scholar
- 17.Yanai T, Kurosawa A, Nikaido Y, Nakajima N, Saito T, Osada H, Konno A, Hirai H, Takeda S (2016) Identification and molecular docking studies for novel inverse agonists of SREB, super conserved receptor expressed in brain. Genes Cells 21:717–727CrossRefPubMedGoogle Scholar
- 18.Watanabe N, Osada H (2012) Phosphorylation-dependent protein–protein interaction modules as potential molecular targets for cancer therapy. Curr Drug Targets 13:1654–1658CrossRefPubMedGoogle Scholar
- 19.Elia AE, Cantley LC, Yaffe MB (2003) Proteomic screen finds pSer/pThr-binding domain localizing Plk1 to mitotic substrates. Science 299:1228–1231CrossRefPubMedGoogle Scholar
- 20.Watanabe N, Sekine T, Takagi M, Iwasaki JI, Imamoto N, Kawasaki H, Osada H (2009) Deficiency in chromosome congression by the inhibition of PLK1 polo box domain–dependent recognition. J Biol Chem 284:2344–2353CrossRefPubMedGoogle Scholar
- 21.Kondoh Y, Honda K, Osada H (2015) Construction and application of a photo-cross-linked chemical array. Methods Mol Biol 1263:29–41CrossRefPubMedGoogle Scholar
- 22.Miyazaki I, Simizu S, Ichimiya H, Kawatani M, Osada H (2008) Robust and systematic drug screening method using chemical arrays and the protein library: identification of novel inhibitors of carbonic anhydrase II. Biosci Biotechnol Biochem 72:2739–2749CrossRefPubMedGoogle Scholar
- 23.Kanoh N, Kyo M, Inamori K, Ando A, Asami A, Nakao A, Osada H (2006) SPR imaging measurement of photo-cross-linked small molecule microarrays on gold. Annal Chem 78:2226–2230CrossRefGoogle Scholar
- 24.Kondoh Y, Osada H (2013) High-throughput screening identifies small molecule inhibitors of molecular chaperones. Curr Pharm Des 19:473–492CrossRefPubMedGoogle Scholar
- 25.MacBeath G, Schreiber SL (2000) Printing proteins as microarrays for high-throughput function determination. Science 289:1760–1763PubMedGoogle Scholar
- 26.Hergenrother P, Depew K, Schreiber S (2000) Small-molecule microarrays: covalent attachment and screening of alcohol-containing small molecules on glass slides. J Am Chem Soc 122:7849–7850CrossRefGoogle Scholar
- 27.Barnes-Seeman D, Park S, Koehler A, Schreiber S (2003) Expanding the functional group compatibility of small-molecule microarrays: discovery of novel calmodulin ligands. Angew Chem Int Ed Eng 42:2376–2379CrossRefGoogle Scholar
- 28.Kanoh N, Kumashiro S, Simizu S, Kondoh Y, Hatakeyama S, Tashiro H, Osada H (2003) Immobilization of natural products on glass slides by using a photoaffinity reaction and the detection of protein-small-molecule interactions. Angew Chem Int Ed 42:5584–5587CrossRefGoogle Scholar
- 29.Lomenick B, Hao R, Jonai N, Chin RM, Aghajan M, Warburton S, Wang J, Wu RP, Gomez F, Loo JA, Wohlschlegel JA, Vondriska TM, Pelletier J, Herschman HR, Clardy J, Clarke CF, Huang J (2009) Target identification using drug affinity responsive target stability (DARTS). Proc Natl Acad Sci U S A 106:21984–21989CrossRefPubMedPubMedCentralGoogle Scholar
- 30.Lomenick B, Olsen RW, Huang J (2011) Identification of direct protein targets of small molecules. ACS Chem Biol 6:34–46CrossRefPubMedGoogle Scholar
- 31.Martinez Molina D, Jafari R, Ignatushchenko M, Seki T, Larsson EA, Dan C, Sreekumar L, Cao Y, Nordlund P (2013) Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341:84–87CrossRefPubMedGoogle Scholar
- 32.Jafari R, Almqvist H, Axelsson H, Ignatushchenko M, Lundback T, Nordlund P, Martinez Molina D (2014) The cellular thermal shift assay for evaluating drug target interactions in cells. Nat Protoc 9:2100–2122CrossRefPubMedGoogle Scholar
- 33.Shoemaker RH (2006) The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 6:813–823CrossRefPubMedGoogle Scholar
- 34.Kong D, Yamori T (2012) JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs. Bioorg Med Chem 20:1947–1951CrossRefPubMedGoogle Scholar
- 35.Muroi M, Kazami S, Noda K, Kondo H, Takayama H, Kawatani M, Usui T, Osada H (2010) Application of proteomic profiling based on 2D-DIGE for classification of compounds according to the mechanism of action. Chem Biol 17:460–470CrossRefPubMedGoogle Scholar
- 36.Arita Y, Nishimura S, Matsuyama A, Yashiroda Y, Usui T, Boone C, Yoshida M (2011) Microarray-based target identification using drug hypersensitive fission yeast expressing ORFeome. Mol BioSyst 7:1463–1472CrossRefPubMedGoogle Scholar
- 37.Ohtsu Y, Ohba R, Imamura Y, Kobayashi M, Hatori H, Zenkoh T, Hatakeyama M, Manabe T, Hino M, Yamaguchi Y, Kataoka K, Kawaguchi H, Watanabe H, Handa H (2005) Selective ligand purification using high-performance affinity beads. Anal Biochem 338:245–252CrossRefPubMedGoogle Scholar
- 38.Kanoh N, Nakamura T, Honda K, Yamakoshi H, Iwabuchi Y, Osada H (2008) Distribution of photo-cross-linked products from 3-aryl-3-trifluoromethyl-diazirines and alcohols. Tetrahedron 64:5692–5698CrossRefGoogle Scholar
- 39.Kanoh N, Takayama H, Honda K, Moriya T, Teruya T, Simizu S, Osada H, Iwabuchi Y (2010) Cleavable linker for photo-cross-linked small-molecule affinity matrix. Bioconjug Chem 21:182–186CrossRefPubMedGoogle Scholar
- 40.Sato S, Kwon Y, Kamisuki S, Srivastava N, Mao Q, Kawazoe Y, Uesugi M (2007) Polyproline-rod approach to isolating protein targets of bioactive small molecules: isolation of a new target of indomethacin. J Am Chem Soc 129:873–880CrossRefPubMedGoogle Scholar
- 41.Saito A, Kawai K, Takayama H, Kanoh N, Sudo T, Osada H (2008) Improvement of photoaffinity SPR imaging platform and determination of binding site of p62/SQSTM1 to p38 MAP kinase. Chem Asian J 3:1607–1612CrossRefPubMedGoogle Scholar
- 42.Chin RM, Fu X, Pai MY, Vergnes L, Hwang H, Deng G, Diep S, Lomenick B, Meli VS, Monsalve GC, Hu E, Whelan SA, Wang JX, Jung G, Solis GM, Fazlollahi F, Kaweeteerawat C, Quach A, Nili M, Krall AS, Godwin HA, Chang HR, Faull KF, Guo F, Jiang M et al (2014) The metabolite alpha-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature 510:397–401PubMedPubMedCentralGoogle Scholar
- 43.Kawamura T, Kawatani M, Muroi M, Kondoh Y, Futamura Y, Aono H, Tanaka M, Honda K, Osada H (2016) Proteomic profiling of small-molecule inhibitors reveals dispensability of MTH1 for cancer cell survival. Sci Rep 6:26521CrossRefPubMedPubMedCentralGoogle Scholar
- 44.Choi SM, Kim Y, Shim JS, Park JT, Wang RH, Leach SD, Liu JO, Deng C, Ye Z, Jang YY (2013) Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells. Hepatology 57:2458–2468CrossRefPubMedPubMedCentralGoogle Scholar
- 45.Wada A, Hara S, Osada H (2014) Ribosome display and photo-cross-linking techniques for in vitro identification of target proteins of bioactive small molecules. Anal Chem 86:6768–6773CrossRefPubMedGoogle Scholar
- 46.Aretz J, Kondoh Y, Honda K, Anumala UR, Nazare M, Watanabe N, Osada H, Rademacher C (2016) Chemical fragment arrays for rapid druggability assessment. Chem Commun (Camb) 52:9067–9070CrossRefGoogle Scholar
- 47.Osada H (2016) Chemical and biological studies of reveromycin A. J Antibiot 69:723–730. doi: 10.1038/ja.2016.57 CrossRefPubMedGoogle Scholar