Skip to main content

Related Topic: Measurement of Diffusion Coefficient of Chemicals

  • Chapter
  • First Online:
  • 1265 Accesses

Abstract

Some physical penetration-enhancing techniques may create permeation routes in the skin barrier, which may involve water channels for the hydrophilic drugs. In those processes, diffusion in the channels is the major mechanism of transport, and thus, the diffusion coefficient (D) in aqueous medium could be a primary factor for assessing permeation through the skin barrier. Several experimental methods to determine D for chemical compounds in water or other solvents are described in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tokumoto S, Higo N, Sugibayashi K (2006) Effect of electroporation and pH on the iontophoretic transdermal delivery of human insulin. Int J Pharm 326:13–19

    Article  CAS  PubMed  Google Scholar 

  2. Lombry C, Dujardin N, Préat V (2000) Transdermal delivery of macromolecules using skin electroporation. Pharm Res 17:32–37

    Article  CAS  PubMed  Google Scholar 

  3. Ueda H, Mutoh M, Seki T et al (2009) Acoustic cavitation as an enhancing mechanism of low-frequency sonophoresis for transdermal drug delivery. Biol Pharm Bull 32:916–920

    Article  CAS  PubMed  Google Scholar 

  4. Zhou CP, Liu YL, Wang HL et al (2010) Transdermal delivery of insulin using microneedle rollers in vivo. Int J Pharm 392:127–133

    Article  CAS  PubMed  Google Scholar 

  5. Barrow GM (1996) Physical chemisty, 6th edn. McGraw-Hill, New York, pp 838–847

    Google Scholar 

  6. Nakagaki M (1986) Physical chemistry for physical property. Nankodo, Tokyo

    Google Scholar 

  7. Stokes RH (1950) An improved diaphragm-cell for diffusion studies, and some tests of the method. J Am Chem Soc 72:763–767

    Article  CAS  Google Scholar 

  8. Grushka E, Kikta EJJ (1976) Diffusion in liquids. II. The dependence of the diffusion coefficients on molecular weight and on temperature. J Am Chem Soc 98:643–648

    Article  CAS  Google Scholar 

  9. Mosher GL (1994) The determination of interfacial transfer constants using side-by-side diffusion cells. Pharm Res 11:1325–1329

    Article  CAS  PubMed  Google Scholar 

  10. Seki T, Mochida J, Okamoto M et al (2003) Measurement of diffusion coefficients of parabens and steroids in water and 1-octanol. Chem Pharm Bull 51:734–736

    Article  CAS  PubMed  Google Scholar 

  11. Seki T, Okamoto M, Hosoya O, Juni K (2000) Measurement of diffusion coefficients of parabens by the chromatographic broadening method. J Pharm Sci Technol Jpn 60:114–117

    CAS  Google Scholar 

  12. Hosoya O, Chono S, Saso Y et al (2004) Determination of diffusion coefficients of peptides and prediction of permeability through a porous membrane. J Pharm Pharmacol 56:1501–1507

    Article  CAS  PubMed  Google Scholar 

  13. Renkin EM (1954) Filtration, diffusion, and molecular sieving through porous cellulose membranes. J Gen Physiol 38:225–243

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Berne BJ, Pecora R (2000) Dynamic light scattering: with applications to chemistry, biology, and physics. Dover Publications, INC., New York

    Google Scholar 

  15. Pecora R (1985) Dynamic light scattering: applications of photon correlation spectroscopy. Plenum Press, New York

    Book  Google Scholar 

  16. Suzuki T (2004) New techniques of preparing a stabile emulsion. Gijutsu-jyohou kyokai, Tokyo

    Google Scholar 

  17. Stait-Gardner T, Anil Kumar PG, Price WS (2008) Steady state effects in PGSE NMR diffusion experiments. Chem Phys Lett 462:331–336

    Article  CAS  Google Scholar 

  18. Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292

    Article  CAS  Google Scholar 

  19. Morris KF, Johnson CSJ (1993) Resolution of discrete and continuous molecular size distributions by means of diffusion-ordered 2D NMR spectroscopy. J Am Chem Soc 115:4291–4299

    Article  CAS  Google Scholar 

  20. Zhao Q, Brenner T, Matsukawa S (2013) Molecular mobility and microscopic structure changes in κ-carrageenan solutions studied by gradient NMR. Carbohydr Polym 95:458–464

    Article  CAS  PubMed  Google Scholar 

  21. Johnson CSJ (1999) Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications. Prog Nucl Magn Reson Spectrosc 34:203–256

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshinobu Seki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Seki, T., Miki, R. (2017). Related Topic: Measurement of Diffusion Coefficient of Chemicals. In: Sugibayashi, K. (eds) Skin Permeation and Disposition of Therapeutic and Cosmeceutical Compounds. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56526-0_33

Download citation

Publish with us

Policies and ethics