Skip to main content

Abstract

Quantitative structure–property relationship (QSPR) modeling is generally used to develop in silico prediction models of skin permeability based on the compound molecular structures. Due to the improved quality and size of permeability datasets and the use of promising machine learning techniques, appropriate molecular descriptors, and model validation, current QSPR models provide a highly reliable and efficient option for assessing skin permeability of numerous candidate compounds for use in dermatological medicines and cosmetics. While computational models can predict skin permeability of even yet-to-be synthesized or virtually generated compounds, the traditional prediction models have been limited to only evaluating the skin permeability of permeants in aqueous solutions. Such models cannot evaluate the effects of solvents on skin permeability that constitute a crucial problem for the optimization of topical formulations’ compositions. This has motivated the recent development of models that can predict even the complicated solvent effects on skin permeability with quantitative accuracy. Here, we introduce the general procedures of QSPR modeling for predicting skin permeability and review the existing models including the newest models that can predict solvent effects on skin permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Franz TJ (1975) Percutaneous absorption on the relevance of in vitro data. J Invest Dermatol 64(3):190–195

    Article  CAS  PubMed  Google Scholar 

  2. Bartek MJ et al (1972) Skin permeability in vivo: comparison in rat, rabbit, pig and man. J Invest Dermatol 58(3):114–123

    Article  CAS  PubMed  Google Scholar 

  3. Potts RO, Guy RH (1992) Predicting skin permeability. Pharm Res 9(5):663–669

    Article  CAS  PubMed  Google Scholar 

  4. Cronin MT et al (1999) Investigation of the mechanism of flux across human skin in vitro by quantitative structure-permeability relationships. Eur J Pharm Sci 7(4):325–330

    Article  CAS  PubMed  Google Scholar 

  5. Moss GP, Cronin MT (2002) Quantitative structure-permeability relationships for percutaneous absorption: re-analysis of steroid data. Int J Pharm 238(1–2):105–109

    Article  CAS  PubMed  Google Scholar 

  6. Patel H et al (2002) Quantitative structure-activity relationships (QSARs) for the prediction of skin permeation of exogenous chemicals. Chemosphere 48(6):603–613

    Article  CAS  PubMed  Google Scholar 

  7. Lim CW et al (2002) Prediction of human skin permeability using a combination of molecular orbital calculations and artificial neural network. Biol Pharm Bull 25(3):361–366

    Article  CAS  PubMed  Google Scholar 

  8. Abraham MH, Martins F (2004) Human skin permeation and partition: general linear free-energy relationship analyses. J Pharm Sci 93(6):1508–1523

    Article  CAS  PubMed  Google Scholar 

  9. Katritzky AR et al (2006) Skin permeation rate as a function of chemical structure. J Med Chem 49(11):3305–3314

    Article  CAS  PubMed  Google Scholar 

  10. Basak SC et al (2007) A quantitative structure-activity relationship (QSAR) study of dermal absorption using theoretical molecular descriptors. SAR QSAR Environ Res 18(1–2):45–55

    Article  CAS  PubMed  Google Scholar 

  11. Chen LJ et al (2007) Prediction of human skin permeability using artificial neural network (ANN) modeling. Acta Pharmacol Sin 28(4):591–600

    Article  CAS  PubMed  Google Scholar 

  12. Neely BJ et al (2009) Nonlinear quantitative structure-property relationship modeling of skin permeation coefficient. J Pharm Sci 98(11):4069–4084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chauhan P, Shakya M (2010) Role of physicochemical properties in the estimation of skin permeability: in vitro data assessment by Partial Least-Squares Regression. SAR QSAR Environ Res 21(5–6):481–494

    Article  CAS  PubMed  Google Scholar 

  14. Khajeh A, Modarress H (2014) Linear and nonlinear quantitative structure-property relationship modelling of skin permeability. SAR QSAR Environ Res 25(1):35–50

    Article  CAS  PubMed  Google Scholar 

  15. Patel J (2013) Science of the science, drug discovery and artificial neural networks. Curr Drug Discov Technol 10(1):2–7

    CAS  PubMed  Google Scholar 

  16. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  17. Smola AJ, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14(3):199–222

    Article  Google Scholar 

  18. Atobe T et al (2015) Artificial neural network analysis for predicting human percutaneous absorption taking account of vehicle properties. J Toxicol Sci 40(2):277–294

    Article  CAS  PubMed  Google Scholar 

  19. Baba H et al (2015) Modeling and prediction of solvent effect on human skin permeability using support vector regression and random forest. Pharm Res 32(11):3604–3617

    Article  CAS  PubMed  Google Scholar 

  20. Ghafourian T et al (2010) Validated models for predicting skin penetration from different vehicles. Eur J Pharm Sci 41(5):612–616

    Article  CAS  PubMed  Google Scholar 

  21. Ghafourian T et al (2010) Modelling the effect of mixture components on permeation through skin. Int J Pharm 398(1–2):28–32

    Article  CAS  PubMed  Google Scholar 

  22. Riviere JE, Brooks JD (2007) Prediction of dermal absorption from complex chemical mixtures: incorporation of vehicle effects and interactions into a QSPR framework. SAR QSAR Environ Res 18(1–2):31–44

    Article  CAS  PubMed  Google Scholar 

  23. Riviere JE, Brooks JD (2011) Predicting skin permeability from complex chemical mixtures: dependency of quantitative structure permeation relationships on biology of skin model used. Toxicol Sci 119(1):224–232

    Article  CAS  PubMed  Google Scholar 

  24. van Ravenzwaay B, Leibold E (2004) A comparison between in vitro rat and human and in vivo rat skin absorption studies. Hum Exp Toxicol 23(9):421–430

    Article  PubMed  Google Scholar 

  25. Moss GP et al (2011) The application and limitations of mathematical modelling in the prediction of permeability across mammalian skin and polydimethylsiloxane membranes. J Pharm Pharmacol 63(11):1411–1427

    Article  CAS  PubMed  Google Scholar 

  26. Baba H et al (2015) In silico predictions of human skin permeability using nonlinear quantitative structure-property relationship models. Pharm Res 32(7):2360–2371

    Article  CAS  PubMed  Google Scholar 

  27. Vecchia BE, Bunge AL (2002) Skin absorption databases and predictive equations. In: Guy R, Hadgraft J (eds) Transdermal drug delivery, 2nd edn. Marcel Dekker, New York, pp 57–141

    Google Scholar 

  28. Netzeva TI et al (2005) Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships. The report and recommendations of ECVAM Workshop 52. Altern Lab Anim 33(2):155–173

    CAS  PubMed  Google Scholar 

  29. Magnusson BM et al (2004) Molecular size as the main determinant of solute maximum flux across the skin. J Invest Dermatol 122(4):993–999

    Article  CAS  PubMed  Google Scholar 

  30. Flynn GL (1990) Physicochemical determinants of skin absorption. In: Gerrity TR, Henry CJ (eds) Principles of route-to-route extrapolation for risk assessment, 1st edn. Elsevier, New York, pp 93–127

    Google Scholar 

  31. Kirchner LA et al (1997) The prediction of skin permeability by using physicochemical data. Altern Lab Anim 25:359–370

    Google Scholar 

  32. Neumann D et al (2006) A fully computational model for predicting percutaneous drug absorption. J Chem Inf Model 46(1):424–429

    Article  CAS  PubMed  Google Scholar 

  33. Buchwald P, Bodor N (2001) A simple, predictive, structure-based skin permeability model. J Pharm Pharmacol 53(8):1087–1098

    Article  CAS  PubMed  Google Scholar 

  34. Lien EJ, Gao H (1995) QSAR analysis of skin permeability of various drugs in man as compared to in vivo and in vitro studies in rodents. Pharm Res 12(4):583–587

    Article  CAS  PubMed  Google Scholar 

  35. Tropsha A (2010) QSAR in drug discovery. In: Merz KM et al (eds) Drug design structure- and ligand-based approaches. Cambridge University Press, Cambridge, pp 151–164

    Chapter  Google Scholar 

  36. Shahlaei M (2013) Descriptor selection methods in quantitative structure-activity relationship studies: a review study. Chem Rev 113(10):8093–8103

    Article  CAS  PubMed  Google Scholar 

  37. Moss GP et al (2009) The application of Gaussian processes in the prediction of percutaneous absorption. J Pharm Pharmacol 61(9):1147–1153

    Article  CAS  PubMed  Google Scholar 

  38. Marsland S (2014) Machine learning: an algorithmic perspective, 2nd edn. CRC Press, New York

    Google Scholar 

  39. Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model 20(4):269–276

    Article  CAS  PubMed  Google Scholar 

  40. Chirico N, Gramatica P (2011) Real external predictivity of QSAR models: how to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient. J Chem Inf Model 51(9):2320–2335

    Article  CAS  PubMed  Google Scholar 

  41. Chirico N, Gramatica P (2012) Real external predictivity of QSAR models. Part 2. New intercomparable thresholds for different validation criteria and the need for scatter plot inspection. J Chem Inf Model 52(8):2044–2058

    Article  CAS  PubMed  Google Scholar 

  42. Consonni V et al (2009) Comments on the definition of the Q2 parameter for QSAR validation. J Chem Inf Model 49(7):1669–1678

    Article  CAS  PubMed  Google Scholar 

  43. Ojha PK et al (2011) Further exploring rm2 metrics for validation of QSPR models. Chemom Intell Lab Syst 107(1):194–205

    Article  CAS  Google Scholar 

  44. Roy K et al (2012) Comparative studies on some metrics for external validation of QSPR models. J Chem Inf Model 52(2):396–408

    Article  CAS  PubMed  Google Scholar 

  45. Roy PP, Roy K (2008) On some aspects of variable selection for partial least squares regression models. QSAR Comb Sci 27(3):302–313

    Article  CAS  Google Scholar 

  46. Barry BW (2004) Breaching the skin’s barrier to drugs. Nat Biotechnol 22(2):165–167

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromi Baba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Baba, H., Takahara, Ji., Yamashita, F. (2017). In Silico Approach. In: Sugibayashi, K. (eds) Skin Permeation and Disposition of Therapeutic and Cosmeceutical Compounds. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56526-0_32

Download citation

Publish with us

Policies and ethics