Leukemogenesis and Molecular Characteristics of Tumor Cells



Adult T-cell leukemia (ATL) develops in carriers of human T-cell leukemia virus (HTLV-1) in adulthood after a long period of clinical latency. Epidemiological data have demonstrated that leukemogenesis is based on a multistep carcinogenesis model involving five or more genetic events. However, detailed genetic and epigenetic events that lead to the transformation of HTLV-1-infected cells have not yet been clarified. This chapter summarizes the current knowledge on the clonal growth of HTLV-1-infected cells, including ATL cells in vivo, gene expression profiles, and genetic and epigenetic events characterized to date. HTLV-1-infected T cells immortalized by HTLV-1 have been shown to result in polyclonal growth in vivo, with over 10,000 clones. ATL cells usually arise from one specific clone; however, occasional concurrent transformation can result in ATL with multiple clones. A multicolor fluorescence-activated cell sorting (FACS) system developed to identify and sort HTLV-1-infected CD4+ T cells enabled the characterization of cellular and genetic/epigenetic changes during malignant transformation in vivo. Next-generation sequencing (NGS) techniques have led to studies that provide a comprehensive landscape of genetic abnormalities in ATL cells. Revelation of the epigenetic landscape of ATL cells, combined with genetic information, provided the basis for understanding abnormalities in the transcriptome of ATL cells. This new set of information advanced our understanding of leukemogenesis and provided the basis for drug development, although mechanisms underlying the progressive accumulation of these abnormalities remain to be clarified.


Clonality Epigenome Next-generation sequencing Transcriptome 


  1. 1.
    Uchiyama T, Yodoi J, Sagawa K, Takatsuki K, Uchino H. Adult T-cell leukemia: clinical and hematologic features of 16 cases. Blood. 1997;50:481–92.Google Scholar
  2. 2.
    Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci U S A. 1980;77:7415–9.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Shimoyama M. Diagnostic criteria and classification of clinical subtypes of adult T-cell leukaemia-lymphoma. A report from the Lymphoma Study Group (1984–87). Br J Haematol. 1991;79:428–39.CrossRefPubMedGoogle Scholar
  4. 4.
    Okamoto T, Ohno Y, Tsugane S, et al. Multi-step carcinogenesis model for adult T-cell leukemia. Jpn J Cancer Res. 1989;80:191–5.CrossRefPubMedGoogle Scholar
  5. 5.
    Yoshida M, Seiki M, Yamaguchi K, Takatsuki K. Monoclonal integration of human T-cell leukemia provirus in all primary tumors of adult T-cell leukemia suggests causative role of human T-cell leukemia virus in the disease. Proc Natl Acad Sci U S A. 1984;81:2534–7.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Yamaguchi K, Seiki M, Yoshida M, Nishimura H, Kawano F, Takatsuki K. The detection of human T cell leukemia virus proviral DNA and its application for classification and diagnosis of T cell malignancy. Blood. 1984;63:1235–40.PubMedGoogle Scholar
  7. 7.
    Kondo S, Kotani T, Tsumori S, et al. Identification of biclonal (duplex) leukemia cells expressing CD4+/CD8- or CD4−/CD8+ from a patient with adult T-cell leukemia/lymphoma. Br J Haematol. 1995;89:669–71.CrossRefPubMedGoogle Scholar
  8. 8.
    Shibata K, Shimamoto Y, Suga K, et al. Adult T-cell leukemia/lymphoma with two distinct clones in peripheral blood and lymph node. Am J Hematol. 1995;48:116–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Shimamoto Y, Kikuchi M, Funai N, Suga K, Matsuzaki M, Yamaguchi M. Spontaneous remission in adult T-cell leukemia/lymphoma. Cancer. 1993;72:735–40.CrossRefPubMedGoogle Scholar
  10. 10.
    Kato N, Sugawara H, Aoyagi S, Mayuzumi M. Lymphoma-type adult T-cell leukemia-lymphoma with a bulky cutaneous tumor showing multiple human T-lymphotropic virus-1 DNA integration. Br J Haematol. 2001;144:1244–8.Google Scholar
  11. 11.
    Tsukasaki K, Tsushima H, Yamamura M, et al. Integration patterns of HTLV-1 provirus in relation to the clinical course of ATL: frequent clonal change at crisis from indolent disease. Blood. 1997;89:948–56.PubMedGoogle Scholar
  12. 12.
    Umino A, Nakagawa M, Utsunomiya A, Tsukasaki K, Taira N, Katayama N, Seto M. Clonal evolution of adult T-cell leukemia/lymphoma takes place in the lymph nodes. Blood. 2011;117:5473–8. doi: 10.1182/blood-2010-12-327791.CrossRefPubMedGoogle Scholar
  13. 13.
    Umino A, Seto M. Array CGH reveals clonal evolution of adult T-cell leukemia/lymphoma. Methods Mol Biol. 2013;973:189–96. doi: 10.1007/978-1-62703-281-0_12.CrossRefPubMedGoogle Scholar
  14. 14.
    Takemoto S, Matsuoka M, Yamaguchi K, Takatsuki K. A novel diagnostic method of adult T-cell leukemia: monoclonal integration of human T-cell lymphotropic virus type I provirus DNA detected by inverse polymerase chain reaction. Blood. 1994;84:3080–5.PubMedGoogle Scholar
  15. 15.
    Etoh K, Tamiya S, Yamaguchi K, Okayama A, Tsubouchi H, Ideta T, Mueller N, Takatsuki K, Matsuoka M. Persistent clonal proliferation of human T-lymphotropic virus type I-infected cells in vivo. Cancer Res. 1997;57:4862–7.PubMedGoogle Scholar
  16. 16.
    Ohshima K, Mukai Y, Shiraki H, Suzumiya J, Tashiro K, Kikuchi M. Clonal integration and expression of human T-cell lymphotropic virus type I in carriers detected by polymerase chain reaction and inverse PCR. Am J Hematol. 1997;54:306–12.CrossRefPubMedGoogle Scholar
  17. 17.
    Eiraku N, Hingorani R, Ijichi S, et al. Clonal expansion within CD4+ and CD8+ T cell subsets in human T lymphotropic virus type I-infected individuals. J Immunol. 1998;161:6674–80.PubMedGoogle Scholar
  18. 18.
    Okayama A, Stuver S, Iga M, et al. Sequential change of virus markers in seroconverters with community-acquired infection of human T lymphotropic virus type I. J Infect Dis. 2001;183:1031–107.CrossRefPubMedGoogle Scholar
  19. 19.
    Tanaka G, Okayama A, Watanabe T, et al. The clonal expansion of human T lymphotropic virus type 1-infected T cells: a comparison between seroconverters and long-term carriers. J Infect Dis. 2005;191:1140–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Cavrois M, Wain-Hobson S, Wattel E. Stochastic events in the amplification of HTLV-I integration sites by linker-mediated PCR. Res Virol. 1995;146:179–84.CrossRefPubMedGoogle Scholar
  21. 21.
    Cavrois M, Gessain A, Wain-Hobson S, Wattel E. Proliferation of HTLV-1 infected circulating cells in vivo in all asymptomatic carriers and patients with TSP/HAM. Oncogene. 1996;12:2419–23.PubMedGoogle Scholar
  22. 22.
    Gabet AS, Mortreux F, Talarmin A, et al. High circulating proviral load with oligoclonal expansion of HTLV-1 bearing T cells in HTLV-1 carriers with strongyloidiasis. Oncogene. 2000;19:4954–60.CrossRefPubMedGoogle Scholar
  23. 23.
    Gillet NA, Malani N, Melamed A, et al. The host genomic environment of the provirus determines the abundance of HTLV-1-infected T-cell clones. Blood. 2011;117:3113–22. doi: 10.1182/blood-2010-10-312926.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Melamed A, Laydon DJ, Gillet NA, Tanaka Y, Taylor GP, Bangham CR. Genome-wide determinants of proviral targeting, clonal abundance and expression in natural HTLV-1 infection. PLoS Pathog. 2013;9:e1003271. doi: 10.1371/journal.ppat.1003271.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Cook LB, Melamed A, Niederer H, et al. The role of HTLV-1 clonality, proviral structure, and genomic integration site in adult T-cell leukemia/lymphoma. Blood. 2014;123:3925–31. doi: 10.1182/blood-2014-02-553602.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Firouzi S, López Y, Suzuki Y, Nakai K, Sugano S, Yamochi T, Watanabe T. Development and validation of a new high-throughput method to investigate the clonality of HTLV-1-infected cells based on provirus integration sites. Genome Med. 2014;6:46. doi: 10.1186/gm568. eCollection 2014CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kobayashi S, Nakano K, Watanabe E, et al. CADM1 expression and stepwise downregulation of CD7 are closely associated with clonal expansion of HTLV-1-infected cells in adult T-cell leukemia/lymphoma. Clin Cancer Res. 2014;20:2851–61. doi: 10.1158/1078-0432.CCR-13-3169.CrossRefPubMedGoogle Scholar
  28. 28.
    Kobayashi S, Watanabe E, Ishigaki T, et al. Advanced HTLV-1 carriers and early-stage indolent ATLs are indistinguishable based on CADM1 positivity in flow cytometry. Cancer Sci. 2015;106:598–603. doi: 10.1111/cas.12639.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Rosenblatt JD, Miles S, Gasson JC, Prager D. Transactivation of cellular genes by human retroviruses. Curr Top Microbiol Immunol. 1995;193:25–49.PubMedGoogle Scholar
  30. 30.
    Bertini R, Luini W, Sozzani S, et al. Identification of MIP-1 alpha/LD78 as a monocyte chemoattractant released by the HTLV-1-transformed cell line MT-4. AIDS Res Hum Retrovir. 1995;11:155–60.CrossRefPubMedGoogle Scholar
  31. 31.
    Baba M, Imai T, Yoshida T, Yoshie O. Constitutive expression of various chemokine genes in human T-cell lines infected with human T-cell leukemia virus type 1: role of the viral transactivator Tax. Int J Cancer. 1996;66:124–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Hasegawa H, Nomura T, Kohno M, et al. Increased chemokine receptor CCR7/EBI1 expression enhances the infiltration of lymphoid organs by adult T-cell leukemia cells. Blood. 2000;95:30–8.PubMedGoogle Scholar
  33. 33.
    Yoshie O, Fujisawa R, Nakayama T, et al. Frequent expression of CCR4 in adult T-cell leukemia and human T-cell leukemia virus type 1-transformed T cells. Blood. 2002;99:1505–11.CrossRefPubMedGoogle Scholar
  34. 34.
    Kuramochi M, Fukuhara H, Nobukuni T, et al. TSLC1 is a tumor-suppressor gene in human non-small-cell lung cancer. Nat Genet. 2001;27:427–30.CrossRefPubMedGoogle Scholar
  35. 35.
    Sasaki H, Nishikata I, Shiraga T, et al. Overexpression of a cell adhesion molecule, TSLC1, as a possible molecular marker for acute-type adult T-cell leukemia. Blood. 2005;105:1204–13.CrossRefPubMedGoogle Scholar
  36. 36.
    Watanabe T, Yamaguchi K, Takatsuki K, Osame M, Yoshida M. Constitutive expression of parathyroid hormone-related protein gene in human T cell leukemia virus type 1 (HTLV-1) carriers and adult T cell leukemia patients that can be trans-activated by HTLV-1 tax gene. J Exp Med. 1990;172:759–65.CrossRefPubMedGoogle Scholar
  37. 37.
    Ishikawa T, Imura A, Tanaka K, et al. E-selectin and vascular cell adhesion molecule-1 mediate adult T-cell leukemia cell adhesion to endothelial cells. Blood. 1992;82:1590–8.Google Scholar
  38. 38.
    Imura A, Hori T, Imada K, et al. The human OX40/gp34 system directly mediates adhesion of activated T cells to vascular endothelial cells. J Exp Med. 1996;183:2185–95.CrossRefPubMedGoogle Scholar
  39. 39.
    Tatewaki M, Yamaguchi K, Matsuoka M, et al. Constitutive overexpression of the L-selectin gene in fresh leukemic cells of adult T-cell leukemia that can be transactivated by human T-cell lymphotropic virus type 1 Tax. Blood. 1995;86:3109–17.PubMedGoogle Scholar
  40. 40.
    Uchiyama T, Ishikawa T, Imura A. Cell adhesion molecules in HTLV-I infection. J AIDS Hum Retrovirol. 1996;13(Suppl 1):S114–8.Google Scholar
  41. 41.
    Koizumi S, Iwanaga M, Imai S, et al. Expression of myeloid cell phenotypes by a novel adult T-cell leukemia/lymphoma cell line. J Natl Cancer Inst. 1992;84:690–3.CrossRefPubMedGoogle Scholar
  42. 42.
    Tricarico M, Macchi B, D'Atri S, Morrone S, Bonmassar E, Fuggetta MP, Graziani G. In vitro infection of CD4+ T lymphocytes with HTLV-1 generates immortalized cell lines coexpressing lymphoid and myeloid cell markers. Leukemia. 1999;13:222–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Pichler K, Schneider G, Grassmann R. Microrna mir-146a and further oncogenesis-related cellular micrornas are dysregulated in HTLV-1-transformed T lymphocytes. Retrovirology. 2008;5:e100.CrossRefGoogle Scholar
  44. 44.
    Bellon M, Lepelletier Y, Hermine O, Nicot C. Deregulation of microrna involved in hematopoiesis and the immune response in HTLV-I adult T-cell leukemia. Blood. 2009;113:4914–7.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Yeung ML, Yasunaga J, Bennasser Y, et al. Roles for micrornas, miR-93 and miR-130b, and tumor protein 53-induced nuclear protein 1 tumor suppressor in cell growth dysregulation by human T-cell lymphotrophic virus 1. Cancer Res. 2008;68:8976–85.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Yamagishi M, Nakano K, Miyake A, et al. Polycomb-mediated loss of miR-31 activates nik-dependent NF- κb pathway in adult T cell leukemia and other cancers. Cancer Cell. 2012;21:121–35.CrossRefPubMedGoogle Scholar
  47. 47.
    Mori N, Fujii M, Ikeda S, Yamada Y, Tomonaga M, Ballard DW, Yamamoto N. Constitutive activation of NF-kappaB in primary adult T-cell leukemia cells. Blood. 1999;93:2360–8.PubMedGoogle Scholar
  48. 48.
    Watanabe M, Ohsugi T, Shoda M, et al. Dual targeting of transformed and untransformed HTLV-1-infected T cells by DHMEQ, a potent and selective inhibitor of NF-kappaB, as a strategy for chemoprevention and therapy of adult T-cell leukemia. Blood. 2005;106:2462–71.CrossRefPubMedGoogle Scholar
  49. 49.
    Fukuda R, Hayashi A, Utsunomiya A, et al. Alteration of phosphatidylinositol 3-kinase cascade in the multilobulated nuclear formation of adult T cell leukemia/lymphoma (ATLL). Proc Natl Acad Sci U S A. 2005;102:15213–8.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Takemoto S, Mulloy JC, Cereseto A, et al. Proliferation of adult T cell leukemia/lymphoma cells is associated with the constitutive activation of JAK/STAT proteins. Proc Natl Acad Sci U S A. 1997;94:13897–902.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Kamada N, Sakurai M, Miyamoto K, et al. Chromosome abnormalities in adult T-cell leukemia/lymphoma: a karyotype review committee report. Cancer Res. 1992;52:1481–93.PubMedGoogle Scholar
  52. 52.
    Itoyama T, Chaganti RS, Yamada Y, et al. Cytogenetic analysis and clinical significance in adult T-cell leukemia/lymphoma: a study of 50 cases from the human T-cell leukemia virus type-1 endemic area, Nagasaki. Blood. 2001;97:3612–20.CrossRefPubMedGoogle Scholar
  53. 53.
    Tsukasaki K, Krebs J, Nagai K, Tomonaga M, Koeffler HP, Bartram CR, Jauch A. Comparative genomic hybridization analysis in adult T-cell leukemia/lymphoma: correlation with clinical course. Blood. 2001;97:3875–81.CrossRefPubMedGoogle Scholar
  54. 54.
    Sakashita A, Hattori T, Miller CW, et al. Mutations of the p53 gene in adult T-cell leukemia. Blood. 1992;79:477–80.PubMedGoogle Scholar
  55. 55.
    Cesarman E, Chadburn A, Inghirami G, Gaidano G, Knowles DM. Structural and functional analysis of oncogenes and tumor suppressor genes in adult T-cell leukemia/lymphoma shows frequent p53 mutations. Blood. 1992;80:3205–16.PubMedGoogle Scholar
  56. 56.
    Nagai H, Kinoshita T, Imamura J, et al. Genetic alteration of p53 in some patients with adult T-cell leukemia. Jpn J Cancer Res. 1991;82:1421–7.CrossRefPubMedGoogle Scholar
  57. 57.
    Tawara M, Hogerzeil SJ, Yamada Y, et al. Impact of p53 aberration on the progression of adult T-cell leukemia/lymphoma. Cancer Lett. 2006;234:249–55.CrossRefPubMedGoogle Scholar
  58. 58.
    Gaidano G, Ballerini P, Gong JZ, et al. p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 1991;88:5413–7.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Yamato K, Oka T, Hiroi M, et al. Aberrant expression of the p53 tumor suppressor gene in adult T-cell leukemia and HTLV- I-infected cells. Jpn J Cancer Res. 1993;84:4–8.CrossRefPubMedGoogle Scholar
  60. 60.
    Reid RL, Lindholm PF, Mireskandari A, Dittmer J, Brady JN. Stabilization of wild-type p53 in human T-lymphocytes transformed by HTLV-I. Oncogene. 1993;8:3029–36.PubMedGoogle Scholar
  61. 61.
    Takemoto S, Trovato R, Cereseto A, et al. p53 Stabilization and functional impairment in the absence of genetic mutation or the alteration of the p14(APF)-MDM2 loop in ex vivo and cultured adult T-cell leukemia/lymphoma cells. Blood. 2000;95:3939–44.PubMedGoogle Scholar
  62. 62.
    Akagi T, Ono H, Tsuchida N, Shimotohno K. Aberrant expression and function of p53 in T cells immortalized by HTLV-I Tax1. FEBS Lett. 1997;406:263–6.CrossRefPubMedGoogle Scholar
  63. 63.
    Pise-Masison CA, Choi K-S, Radonovich M, Dittmer J, Kim S-J, Brady JN. Inhibition of p53 transactivation function by the human T-cell lymphotropic virus type 1 Tax protein. J Virol. 1998;72:1165–70.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Pise-Masison CA, Mahieux R, Jiang H, et al. Inactivation of p53 by human T-cell lymphotropic virus type 1 tax requires activation of the NF-κB pathway and is dependent on p53 phosphorylation. Mol Cell Biol. 2000;20:3377–86.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Mulloy JC, Kislyakova T, Cereseto A, et al. Human T-cell lymphotropic/leukemia virus type 1 tax abrogates p53-induced cell cycle arrest and apoptosis through its CREB/ATF functional domain. J Virol. 1998;72:8852–60.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Pise-Masison CA, Mahieux R, Radonovich M, Jiang H, Brady JN. Human T-lymphotropic virus type I Tax protein utilizes distinct pathways for p53 inhibition that are cell type- dependent. J Biol Chem. 2001;276:200–5.CrossRefPubMedGoogle Scholar
  67. 67.
    Kataoka K, Nagata Y, Kitanaka A, et al. Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat Genet. 2015;47:1304–15. doi: 10.1038/ng.3415.CrossRefPubMedGoogle Scholar
  68. 68.
    Sherr CJ. Principles of tumor suppression. Cell. 2004;116:235–46.CrossRefPubMedGoogle Scholar
  69. 69.
    Williams RT, Sherr CJ. The INK4-ARF (CDKN2A/B) locus in hematopoiesis and BCR-ABL -induced leukemias. Cold Spring Harb Symp Quant Biol. 2008;73:461–7.CrossRefPubMedGoogle Scholar
  70. 70.
    Trovato R, Cereseto A, Takemoto S, et al. Deletion of the p164A gene in ex vivo acute adult T cell lymphoma/leukemia cells and methylation of the p164A promoter in HTLV type I-infected T cell lines. AIDS Res Hum Retrovir. 2000;16:709–13.CrossRefPubMedGoogle Scholar
  71. 71.
    Uchida T, Kinoshita T, Murate T, Saito H, Hotta T. CDKN2 (MTS1/p164) gene alterations in adult T-cell leukemia/lymphoma. Leuk Lymphoma. 1998;29:27–35.CrossRefPubMedGoogle Scholar
  72. 72.
    Hatta Y, Hirama T, Miller CW, Yamada Y, Tomonaga M, Koeffler HP. Homozygous deletions of the p15 (MTS2) and p16 (CDKN2/MTS1) genes in adult T-cell leukemia. Blood. 1995;85:2699–704.PubMedGoogle Scholar
  73. 73.
    Watanabe M, Nakahata S, Hamasaki M, et al. Downregulation of CDKN1A in adult T-cell leukemia/lymphoma despite overexpression of CDKN1A in human T-lymphotropic virus 1- infected cell lines. J Virol. 2010;84:6966–77.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Hatta Y, Yamada Y, Tomonaga M, Koeffler HP. Extensive analysis of the retinoblastoma gene in adult T cell leukemia/lymphoma (ATL). Leukemia. 1997;11:984–9.CrossRefPubMedGoogle Scholar
  75. 75.
    Takeuchi S, Takeuchi N, Tsukasaki K, et al. Mutations in the retinoblastoma-related gene RB2/p130 in adult T-cell leukaemia/lymphoma. Leuk Lymphoma. 2003;44:699–701.CrossRefPubMedGoogle Scholar
  76. 76.
    Hangaishi A, Ogawa S, Imamura N, et al. Inactivation of multiple tumor-suppressor genes involved in negative regulation of the cell cycle, MTS1/p16INK4A/CDKN2, MTS2/p15INK4B, p53, and Rb genes in primary lymphoid malignancies. Blood. 1996;87:4949–58.PubMedGoogle Scholar
  77. 77.
    Nakayama K, Yamada Y, Koji T, Hayashi T, Tomonaga M, Kamihira S. Expression and phosphorylation status of retinoblastoma protein in adult T-cell leukemia/lymphoma. Leuk Res. 2000;24:299–305.CrossRefPubMedGoogle Scholar
  78. 78.
    Krystal G, Damen JE, Helgason CD, et al. SHIPs ahoy. Int J Biochem Cell Biol. 1999;31:1007–10.CrossRefPubMedGoogle Scholar
  79. 79.
    Sato H, Oka T, Shinnou Y, et al. Multi-step aberrant CpG island hyper-methylation is associated with the progression of adult T-cell leukemia/lymphoma. Am J Pathol. 2010;176:402–15.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Nakahata S, Morishita K. CADM1/TSLC1 is a novel cell surface marker for adult T-cell leukemia/lymphoma. J Clin Exp Hematopathol. 2012;52(1):17–22.CrossRefGoogle Scholar
  81. 81.
    Asanuma S, Yamagishi M, Kawanami K, et al. Adult T-cell leukemia cells are characterized by abnormalities of Helios expression that promotes T-cell growth. Cancer Sci. 2013;104:1097–106. doi: 10.1111/cas.12181.CrossRefPubMedGoogle Scholar
  82. 82.
    Kataoka K, Shiraishi Y, Takeda Y, et al. Aberrant PD-L1 expression through 3′-UTR disruption in multiple cancers. Nature. 2016; doi: 10.1038/nature18294.PubMedGoogle Scholar
  83. 83.
    Nagata Y, Kontani K, Enami T, et al. Variegated RHOA mutations in adult T-cell leukemia/lymphoma. Blood. 2016;127:596–604. doi: 10.1182/blood-2015-06-644948.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Yeh CH, Bai XT, Moles R, Ratner L, Waldmann TA, Watanabe T, Nicot C. Mutation of epigenetic regulators TET2 and MLL3 in patients with HTLV-I-induced acute adult T-cell leukemia. Mol Cancer. 2016;15:15. doi: 10.1186/s12943-016-0500-z.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Nosaka K, Maeda M, Tamiya S, et al. Increasing methylation of the CDKN2A gene is associated with the progression of adult T-cell leukemia. Cancer Res. 2000;60:1043–8.PubMedGoogle Scholar
  86. 86.
    Hofmann WK, Tsukasaki K, Takeuchi N, et al. Methylation analysis of cell cycle control genes in adult T-cell leukemia/lymphoma. Leuk Lymphoma. 2001;42:1107–9.CrossRefPubMedGoogle Scholar
  87. 87.
    Taniguchi A, Nemoto Y, Yokoyama A, Kotani N, Imai S, Shuin T, Daibata M. Promoter methylation of the bone morphogenetic protein-6 gene in association with adult T-cell leukemia. Int J Cancer. 2008;123:1824–31. doi: 10.1002/ijc.23749.CrossRefPubMedGoogle Scholar
  88. 88.
    Yang Y, Takeuchi S, Tsukasaki K, et al. Methylation analysis of the adenomatous polyposis coli (APC) gene in adult T-cell leukemia/lymphoma. Leuk Res. 2005;29:47–51.CrossRefPubMedGoogle Scholar
  89. 89.
    Tsuji T, Sugahara K, Tsuruda K, et al. Clinical and oncologic implications in epigenetic down-regulation of CD26/dipeptidyl peptidase IV in adult T-cell leukemia cells. Int J Hematol. 2004;80:254–60.CrossRefPubMedGoogle Scholar
  90. 90.
    Yasunaga J, Taniguchi Y, Nosaka K, et al. Identification of aberrantly methylated genes in association with adult T-cell leukemia. Cancer Res. 2004;64:6002–9.CrossRefPubMedGoogle Scholar
  91. 91.
    Yoshida M, Nosaka K, Yasunaga J, et al. Aberrant expression of the MEL1S gene identified in association with hypomethylation in adult T-cell leukemia cells. Blood. 2004;103:2753–60.CrossRefPubMedGoogle Scholar
  92. 92.
    Nishioka C, Ikezoe T, Yang J, et al. Histone deacetylase inhibitors induce growth arrest and apoptosis of HTLV-1-infected T-cells via blockade of signaling by nuclear factor kappa B. Leuk Res. 2008;32:287–96.CrossRefPubMedGoogle Scholar
  93. 93.
    Chiechio S, Zammataro M, Morales ME, et al. Epigenetic modulation of mGlu2 receptors by histone deacetylase inhibitors in the treatment of inflammatory pain. Mol Pharmacol. 2009;75:1014–20.CrossRefPubMedGoogle Scholar
  94. 94.
    Ahsan MK, Masutani H, Yamaguchi Y, et al. Loss of interleukin-2-dependency in HTLV-I -infected T cells on gene silencing of thioredoxin-binding protein-2. Oncogene. 2006;25:2181–91.CrossRefPubMedGoogle Scholar
  95. 95.
    Nishinaka Y, Nishiyama A, Masutani H, et al. Loss of thioredoxin-binding protein-2/vitamin D3 up-regulated protein 1 in human T-cell leukemia virus type I-dependent T-cell transformation: implications for adult T-cell leukemia leukemogenesis. Cancer Res. 2004;64:1287–92.CrossRefPubMedGoogle Scholar
  96. 96.
    Zimmerman B, Sargeant A, Landes K, Fernandez SA, Chen CS, Lairmore MD. Efficacy of novel histone deacetylase inhibitor, AR42, in a mouse model of, human T-lymphotropic virus type 1 adult T cell lymphoma. Leuk Res. 2011;35:1491–7.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Sparmann A, van Lohuizen M. Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer. 2006;6:846–56.CrossRefPubMedGoogle Scholar
  98. 98.
    Fujikawa D, Nakagawa S, Hori M, et al. Polycomb-dependent epigenetic landscape in adult T-cell leukemia. Blood. 2016;127:1790–802. doi: 10.1182/blood-2015-08-662593.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  1. 1.Department of Medical Genome Sciences, Graduate School of Frontier SciencesThe University of TokyoTokyoJapan

Personalised recommendations