New Agents of Adult T-cell Leukemia/Lymphoma (ATL)

  • Wataru Munakata
  • Kensei Tobinai


Adult T-cell leukemia-lymphoma (ATL) is a malignancy of peripheral T lymphocytes caused by an RNA retrovirus, human T-cell leukemia virus type I (HTLV-1). ATL remains difficult to cure and has an extremely poor prognosis with conventional chemotherapy; therefore, there is an unmet medical need for novel drugs. CC chemokine receptor 4 (CCR4) is expressed on the tumor cells of most of ATL patients and was considered to be a promising therapeutic target. Mogamulizumab, a defucosylated, humanized anti-CCR4 monoclonal antibody, was developed using a novel glycoengineering technology that remarkably enhances antibody-dependent cell-mediated cytotoxic activity. Mogamulizumab monotherapy achieved a high response rate in patients with relapsed ATL, with an acceptable toxicity profile. Furthermore, dose-intensified combination chemotherapy with mogamulizumab is a promising treatment option for untreated patients with aggressive ATL. In addition, lenalidomide has shown the promising antitumor activity in patients with ATL.


Adult T-cell leukemia-lymphoma ATL CCR4 Mogamulizumab Lenalidomide 


  1. 1.
    Swerdlow SH, Campo E, Harris NL, et al. WHO classification of tumors of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2008.Google Scholar
  2. 2.
    Sonoda S, Li HC, Tajima K. Ethnoepidemiology of HTLV-1 related diseases: ethnic determinants of HTLV-1 susceptibility and its worldwide dispersal. Cancer Sci. 2011;102:295–301.CrossRefPubMedGoogle Scholar
  3. 3.
    Shimoyama M. Diagnostic criteria and classification of clinical subtypes of adult T-cell leukaemia-lymphoma: a report from the Lymphoma Study Group (1984–87). Br J Haematol. 1991;79:428–37.CrossRefPubMedGoogle Scholar
  4. 4.
    Vose J, Armitage J, Weisenburger D, International TCLP. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol. 2008;26:4124–30.CrossRefPubMedGoogle Scholar
  5. 5.
    Tsukasaki K, Utsunomiya A, Fukuda H, et al. VCAP-AMP-VECP compared with biweekly CHOP for adult T-cell leukemialymphoma: Japan Clinical Oncology Group Study JCOG9801. J Clin Oncol. 2007;25:5458–64.CrossRefPubMedGoogle Scholar
  6. 6.
    Utsunomiya A, Miyazaki Y, Takatsuka Y, et al. Improved outcome of adult T cell leukemia/lymphoma with allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2001;27:15–20.CrossRefPubMedGoogle Scholar
  7. 7.
    Hishizawa M, Kanda J, Utsunomiya A, et al. Transplantation of allogeneic hematopoietic stem cells for adult T-cell leukemia: a nationwide retrospective study. Blood. 2010;116:1369–76.CrossRefPubMedGoogle Scholar
  8. 8.
    Ishida T, Hishizawa M, Kato K, et al. Impact of graft-versus-host disease on allogeneic hematopoietic cell transplantation for adult T cell leukemia-lymphoma focusing on preconditioning regimens: nationwide retrospective study. Biol Blood Marrow Transplant. 2013;19:1731–9.CrossRefPubMedGoogle Scholar
  9. 9.
    D’Ambrosio D, Iellem A, Bonecchi R, et al. Selective up-regulation of chemokine receptors CCR4 and CCR8 upon activation of polarized human type 2 Th cells. J Immunol. 1998;161:5111–5.PubMedGoogle Scholar
  10. 10.
    Iellem A, Mariani M, Lang R, et al. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. J Exp Med. 2001;194:847–53.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Mariani M, Lang R, Binda E, et al. Dominance of CCL22 over CCL17 in induction of chemokine receptor CCR4 desensitization and internalization on human Th2 cells. Eur J Immunol. 2004;34:231–40.CrossRefPubMedGoogle Scholar
  12. 12.
    Ishida T, Utsunomiya A, Iida S, et al. Clinical significance of CCR4 expression in adult T-cell leukemia/lymphoma: its close association with skin involvement and unfavorable outcome. Clin Cancer Res. 2003;9:3625–34.PubMedGoogle Scholar
  13. 13.
    Jones D, O’Hara C, Kraus MD, et al. Expression pattern of T-cellassociated chemokine receptors and their chemokines correlates with specific subtypes of T-cell non-Hodgkin lymphoma. Blood. 2000;96:685–90.PubMedGoogle Scholar
  14. 14.
    Ishida T, Inagaki H, Utsunomiya A, et al. CXC chemokine receptor 3 and CC chemokine receptor 4 expression in T-cell and NK-cell lymphomas with special reference to clinicopathological significance for peripheral T-cell lymphoma, unspecified. Clin Cancer Res. 2004;10:5494–500.CrossRefPubMedGoogle Scholar
  15. 15.
    Yagi H, Seo N, Ohshima A, et al. Chemokine receptor expression in cutaneous T cell and NK/T-cell lymphomas: immunohistochemical staining and in vitro chemotactic assay. Am J Surg Pathol. 2006;30:1111–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Ishii T, Ishida T, Utsunomiya A, et al. Defucosylated humanized anti-CCR4 monoclonal antibody KW-0761 as a novel immunotherapeutic agent for adult T-cell leukemia/lymphoma. Clin Cancer Res. 2010;16:1520–31.CrossRefPubMedGoogle Scholar
  17. 17.
    Shinkawa T, Nakamura K, Yamane N, et al. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem. 2003;278:3466–73.CrossRefPubMedGoogle Scholar
  18. 18.
    Yano H, Ishida T, Imada K, et al. Augmentation of antitumour activity of defucosylated chimeric anti-CCR4 monoclonal antibody in SCID mouse model of adult T-cell leukaemia/lymphoma using G-CSF. Br J Haematol. 2008;140:586–9.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Niwa R, Sakurada M, Kobayashi Y, et al. Enhanced natural killer cell binding and activation by low-fucose IgG1 antibody results in potent antibody-dependent cellular cytotoxicity induction at lower antigen density. Clin Cancer Res. 2005;11:2327–36.CrossRefPubMedGoogle Scholar
  20. 20.
    Niwa R, Shoji-Hosaka E, Sakurada M, et al. Defucosylated chimeric anti-CC chemokine receptor 4 IgG1 with enhanced antibody-dependent cellular cytotoxicity shows potent therapeutic activity to T-cell leukemia and lymphoma. Cancer Res. 2004;64:2127–33.CrossRefPubMedGoogle Scholar
  21. 21.
    Yamamoto K, Utsunomiya A, Tobinai K, et al. Phase I study of KW-0761, a defucosylated humanized anti-CCR4 antibody, in relapsed patients with adult T-cell leukemia-lymphoma and peripheral T-cell lymphoma. J Clin Oncol. 2010;28:1591–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Ishida T, Joh T, Uike N, et al. Defucosylated anti-CCR4monoclonal antibody (KW-0761) for relapsed adult T-cell leukemia-lymphoma: a multicenter phase II study. J Clin Oncol. 2012;30:837–42.CrossRefPubMedGoogle Scholar
  23. 23.
    Ishida T, Jo T, Takemoto S, et al. Dose-intensified chemotherapy alone or in combination with mogamulizumab in newly diagnosed aggressive adult T-cell leukaemia-lymphoma: a randomized phase II study. Br J Haematol. 2015;169:672–82.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Henry JY, Labarthe MC, Meyer B, et al. Enhanced cross-priming of naive CD8+ T cells by dendritic cells treated by the IMiDs(R) immunomodulatory compounds lenalidomide and pomalidomide. Immunology. 2013;139:377–85.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Castelli R, Cassin R, Cannavo A, et al. Immunomodulatory drugs: new options for the treatment of myelodysplastic syndromes. Clin Lymphoma Myeloma Leuk. 2013;13:1–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Martiniani R, Di Loreto V, Di Sano C, et al. Biological activity of lenalidomide and its underlying therapeutic effects in multiple myeloma. Adv Hematol. 2012;2012:842945.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Mitsiades CS, Mitsiades NS, Richardson PG, et al. Multiple myeloma: a prototypic disease model for the characterization and therapeutic targeting of interactions between tumor cells and their local microenvironment. J Cell Biochem. 2007;101:950–68.CrossRefPubMedGoogle Scholar
  28. 28.
    Verhelle D, Corral LG, Wong K, et al. Lenalidomide and CC-4047 inhibit the proliferation of malignant B cells while expanding normal CD34+ progenitor cells. Cancer Res. 2007;67:746–55.CrossRefPubMedGoogle Scholar
  29. 29.
    Lopez-Girona A, Mendy D, Ito T, et al. Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia. 2012;26:2326–35.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zhang LH, Kosek J, Wang M, et al. Lenalidomide efficacy in activated B-cell-like subtype diffuse large B-cell lymphoma is dependent upon IRF4 and cereblon expression. Br J Haematol. 2013;160:487–502.CrossRefPubMedGoogle Scholar
  31. 31.
    Zhu YX, Braggio E, Shi CX, et al. Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide. Blood. 2011;118:4771–9.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Heintel D, Rocci A, Ludwig H, et al. High expression of cereblon (CRBN) is associated with improved clinical response in patients with multiple myeloma treated with lenalidomide and dexamethasone. Br J Haematol. 2013;161:695–700.CrossRefPubMedGoogle Scholar
  33. 33.
    Lu G, Middleton RE, Sun H, et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science. 2014;343:305–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Morschhauser F, Fitoussi O, Haioun C, et al. A phase 2, multicentre, single-arm, open-label study to evaluate the safety and efficacy of single-agent lenalidomide (Revlimid) in subjects with relapsed or refractory peripheral T-cell non-Hodgkin lymphoma: the EXPECT trial. Eur J Cancer. 2013;49:2869–76.CrossRefPubMedGoogle Scholar
  35. 35.
    Uike N, Ogura M, Imaizumi Y, et al. Multicenter phase I dose-escalation study of lenalidomide in patients with relapsed adult T-cell leukemia-lymphoma (ATL) or peripheral T-cell lymphoma (PTCL). [abstract 2737]. Presented at the 54th Annual Meeting of the American Society of Hematology. Atlanta, USA; December 8–11, 2012.Google Scholar
  36. 36.
    Deutsch YE, Tadmor T, Podack ER, Rosenblatt JD. CD30: an important new target in hematologic malignancies. Leuk Lymphoma. 2011;52:1641–54.CrossRefPubMedGoogle Scholar
  37. 37.
    Vaklavas C, Forero-Torres A. Safety and efficacy of brentuximab vedotin in patients with Hodgkin lymphoma or systemic anaplastic large cell lymphoma. Ther Adv Hematol. 2012;3:209–25.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Fanale MA, Horwitz SM, Forero-Torres A, et al. Brentuximab vedotin in the front-line treatment of patients with CD30+ peripheral T-cell lymphomas: results of a phase I study. J Clin Oncol. 2014;32:3137–43.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Foss FM, Zinzani PL, Vose JM, Gascoyne RD, Rosen ST, Tobinai K. Peripheral T-cell lymphoma. Blood. 2011;117:6756–67.CrossRefPubMedGoogle Scholar
  40. 40.
    Ishida T, Ito A, Sato F, et al. Stevens-Johnson syndrome associated with mogamulizumab treatment of adult T-cell leukemia/lymphoma. Cancer Sci. 2013;104:647–50.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  1. 1.Department of HematologyNational Cancer Center HospitalTokyoJapan

Personalised recommendations